Skip to main content
Log in

Calcium Vapor Reduction of Tantalum Oxide Compounds

  • Published:
Inorganic Materials Aims and scope

Abstract—

Calcium vapor reduction of Ta2O5 and Mg4Ta2O9 has been studied at temperatures from 750 to 850°C. We have found out specific features of the pore structure of the calciothermic tantalum powders and assessed the effect of precursor particle size on the degree of reduction. To reduce the Mg4Ta2O9 tantalate with an average particle size of 2 μm, holding at a temperature of 800°C for at least 4 h was needed. Reducing the average particle size to 0.15 μm allowed us to reach complete reduction at a temperature of 750°C in just 1 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Zelikman, A.N. and Meerson, G.A., Metallurgiya redkikh metallov (Metallurgy of Rare Metals), Moscow: Metallurgiya, 1973.

  2. Zelikman, A.N., Metallurgiya tugoplavkikh redkikh metallov (Metallurgy of Refractory Rare Metals), Moscow: Metallurgiya, 1986.

  3. Bergman, R.M. and Mosheim, Ch.E., US Patent 4684399, 1987.

  4. Purushotham, Y., Balaji, T., Kumar, A., et al., Chemical and physical properties of tantalum powder, Mod. Phys. Lett. B, 2001, vol. 15, no. 20, pp. 867–871. https://doi.org/10.1142/S0217984901002622

    Article  CAS  Google Scholar 

  5. Cho, S.W., Shim, G., Park, J.S., et al., Making of tantalum powder using the Hunter process, Met. Mater. Int., 2006, vol. 12, no. 1, pp. 51–56. https://doi.org/10.1007/BF03027523

    Article  CAS  Google Scholar 

  6. Kolosov, V.N., Orlov, V.M., Miroshnichenko, M.N., and Prokhorova, T.Yu., Preparation of high-purity tantalum powders by sodium-thermal reduction, Inorg. Mater., 2012, vol. 48, no. 9, pp. 903–907. https://doi.org/10.1134/S0020168512080080

    Article  CAS  Google Scholar 

  7. Obgol’ts, O.Ya., Volynkin, V.P., Frolova, L.M., and Angilevko, V.N., RF Patent 2647971, Byull. Izobret., 2017, no. 30.

  8. Shekhter, L.N., Tripp, T.B., and Lanin, L.L., US Patent 6171363, 2001.

  9. Shekhter, L.N., Tripp, T.B., Lanin, L.L., et al., US Patent 6849104, 2005.

  10. Haas, H., Magnesium vapour reduced tantalum powders with very high capacitances, CARTS Europe 2004: 18th Annual Passive Components Conf., 2004, pp. 5–8.

  11. Nersisyan, H.H., Lee, J.H., Lee, S.I., and Won, C.W., The role of the reaction medium in the self-propagating high temperature synthesis of nanosized tantalum powder, Combust. Flame, 2003, vol. 135, no. 4, pp. 539–545. https://doi.org/10.1134/S107042721003002X

    Article  CAS  Google Scholar 

  12. Orlov, V.M. and Kryzhanov, M.V., Magnesium-thermic reduction of tantalum oxide by self-propagating high-temperature synthesis, Russ. Metall. (Engl. Transl.), 2010, no. 5, pp. 384–388. https://doi.org/10.1134/S0036029510050046

  13. Nersisyan, H.H., Ryu, H.S., Lee, J.H., Suh, H., and Won, H.I., Tantalum network nanoparticles from a Ta2O5 + kMg system by liquid magnesium controlled combustion, Combust. Flame, 2020, vol. 219, September, pp. 136–146. https://doi.org/10.1016/j.combustflame.2020.05.019

    Article  CAS  Google Scholar 

  14. Jung-Woo, H., Ho-Sang, S., and Jae-Young, J., Tantalum powder preparation from Ta2O5 by calciothermic reduction, Korean J. Met. Mater., 2012, vol. 50, no. 11, pp. 823–828. https://doi.org/10.3365/KJMM.2012.50.11.823

    Article  CAS  Google Scholar 

  15. Baba, M., Ono, Y., and Suzuki, R.O., Tantalum and niobium powder preparation from their oxides by calciothermic reduction in the molten CaCl2, J. Phys. Chem. Solids, 2005, vol. 66, nos. 2–4, pp. 466–470. https://doi.org/10.1016/j.jpcs.2004.06.042

    Article  CAS  Google Scholar 

  16. Suzuki, R.O., Baba, M., Ono, Y., and Yamamoto, K., Formation of broccoli-like morphology of tantalum powder, J. Alloys Compd., 2005, vol. 389, nos. 1–2, pp. 310–316. https://doi.org/10.1016/j.jallcom.2004.08.016

    Article  CAS  Google Scholar 

  17. Baba, M. and Suzuki, R.O., Dielectric properties of tantalum powder with broccoli-like morphology, J. Alloys Compd., 2005, vol. 392, nos. 1–2, pp. 225–230. https://doi.org/10.1016/j.jallcom.2004.09.039

    Article  CAS  Google Scholar 

  18. Orlov, V.M. and Kryzhanov, M.V., Production of tantalum powders by the magnesium reduction of tantalates, Russ. Metall. (Engl. Transl.), 2015, no. 7, pp. 590–593. https://doi.org/10.1134/S0036029515070101

  19. Orlov, V.M., Kryzhanov, M.V., and Knyazeva, A.I., Tantalum powders with a mesoporous structure, Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 5, pp. 814–818. https://doi.org/10.1134/S207020511605018X

    Article  CAS  Google Scholar 

  20. Müller, R., Bobeth, M., Brumm, H., et al., Kinetics of nanoscale structure development during Mg-vapour reduction of tantalum oxide, Int. J. Mater. Res., 2007, vol. 98, no. 11, pp. 1138–1145. https://doi.org/10.3139/146.101567

    Article  Google Scholar 

  21. Kolosov, V.N., Orlov, V.M., and Miroshnichenko, M.N., Calcium vapor reduction of group V and VI metal oxide compounds, Inorg. Mater., 2020, vol. 56, no. 1, pp. 35–41. https://doi.org/10.1134/S0020168520010069

    Article  CAS  Google Scholar 

  22. Volkov, A.I. and Zharskii, I.M., Bol’shoi khimicheskii spravochnik (Unabridged Handbook of Chemistry), Minsk: Sovremennaya Shkola, 2005.

  23. Rozenberg, L.A. and Shtel’man, S.V., State of oxygen in tantalum powders, Izv. Akad Nauk SSSR, Met., 1985, no. 4, pp. 163–164.

  24. Orlov, V.M. and Kiselev, E.N., Magnesium Vapor Reduction of Tantalum Oxide Compounds in the Temperature Range 540–680°C, Inorg. Mater., 2022, vol. 58, no. 8, pp. 799–805. https://doi.org/10.1134/S002016852208009X

    Article  CAS  Google Scholar 

  25. Nesmeyanov, A.N., Davlenie para khimicheskikh elementov (Vapor Pressure of Chemical Elements), Moscow: Akad. Nauk SSSR, 1961.

  26. Sing, K.S.W. et al., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984), Pure Appl. Chem., 1985, vol. 57, no. 4, pp. 603–619.

    Article  CAS  Google Scholar 

  27. Orlov, V.M., Kryzhanov, M.V., and Kiselev, E.N., Formation of the pore structure of tantalum and niobium powders during magnesiothermic reduction of lithium tantalate and lithium niobate, Inorg. Mater., 2020, vol. 56, no. 9, pp. 934–940. https://doi.org/10.1134/S0020168520080117

    Article  CAS  Google Scholar 

  28. Orlov, V.M., Kryzhanov, M.V., and Kalinnikov, V.T., Magnesium reduction of tantalum oxide compounds, Dokl. Chem., 2014, vol. 457, no. 2, pp. 160–163. https://doi.org/10.1134/S0012500814080035

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Orlov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, V.M., Kryzhanov, M.V. Calcium Vapor Reduction of Tantalum Oxide Compounds. Inorg Mater 59, 481–486 (2023). https://doi.org/10.1134/S0020168523050126

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523050126

Keywords:

Navigation