Skip to main content
Log in

Preparation of Ultrafine-Grained WC–ZrO2 Ceramics by Spark Plasma Sintering

  • Published:
Inorganic Materials Aims and scope

Abstract—

WC–(1, 3, 5)% ZrO2 ceramics have been produced by spark plasma sintering (SPS). WC–ZrO2 powder mixtures have been prepared by ultrasonic homogenization and stirring of WC nanopowder and submicron t-ZrO2 powder. The WC–ZrO2 sintering rate has been shown to be limited by the grain-boundary diffusion process. Increasing the percentage of ZrO2 leads to a slight increase in optimal SPS temperature, an increase in the concentration of W2C particles, and a decrease in hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Kurlov, A.S. and Gusev, A.I., Fizika i khimiya karbidov vol’frama (Physics and Chemistry of Tungsten Carbides), Moscow: Fizmatlit, 2013.

  2. Sun, J., Zhao, J., Huang, Z., Yan, K., Shen, X., Xing, J., Gao, Y., Jian, Y., Yang, H., and Li, B., A review on binderless tungsten carbide: development and application, Nano–Micro Lett., 2020, vol. 12, no. 1, p. 13. https://doi.org/10.1007/s40820-019-0346-1

    Article  CAS  Google Scholar 

  3. Shevchenko, V.Ya. and Barinov, S.M., Tekhnicheskaya keramika (Engineering Ceramics), Moscow: Nauka, 1993.

  4. Basu, B., Lee, J.-H., and Kim, D.-Y., Development of WC–ZrO2 nanocomposites by spark plasma sintering, J. Am. Ceram. Soc., 2004, vol. 87, no. 2, pp. 317–319. https://doi.org/10.1111/j.1551-2916.2004.00317.x

    Article  CAS  Google Scholar 

  5. Venkateswaran, T., Sarkar, D., and Basu, B., WC–ZrO2 composites: processing and unlubricated tribological properties, Wear, 2006, vol. 260, pp. 1–9. https://doi.org/10.1016/j.wear.2004.11.005

    Article  CAS  Google Scholar 

  6. Tokita, M., Progress of spark plasma sintering (SPS) method, systems, ceramics applications and industrialization, Ceramics, 2021, vol. 4, no. 2, pp. 160–198. https://doi.org/10.3390/ceramics4020014

    Article  CAS  Google Scholar 

  7. Chuvil’deev, V.N., Blagoveshchenskii, Yu.V., Sakharov, N.V., Boldin, M.S., Nokhrin, A.V., Isaeva, N.V., Shotin, S.V., Lopatin, Yu.G., and Smirnova, E.S., Preparation and investigation of ultrafine-grained tungsten carbide with high hardness and fracture toughness, Dokl. Phys., 2015, vol. 60, no. 7, pp. 288–291.

    Article  Google Scholar 

  8. Lantsev, E.A., Malekhonova, N.V., Tsvetkov, Yu.V., Blagoveshchenskii, Yu.V., Chuvil’deev, V.N., Nokhrin, A.V., Boldin, M.S., Andreev, P.V., Smetanina, K.E., and Isaeva, N.V., Rapid sintering of plasma-synthesized tungsten carbide nanopowders with increased oxygen concentration, Fiz. Khim. Obrab. Mater., 2020, no. 6, pp. 23–39.

  9. Isaeva, N.V., Blagoveshchenskii, Yu.V., Blagoveshchenskaya, N.V., Mel’nik, Yu.I., Samokhin, A.V., Alekseev, N.V., and Astashov, A.G. Low-temperature plasma assisted preparation of nanopowders and hard-alloy mixtures, Izv. Vyssh. Uchebn. Zaved., Poroshk. Metall. Funkts. Pokrytiya, 2013, no. 3, pp. 7–14.

  10. Chuvil’deev, V.N., Boldin, M.S., Dyatlova, Ya.G., Rumyantsev, V.I., and Ordan’yan, S.S., Comparative study of hot pressing and high-speed electropulse plasma sintering of Al2O3/ZrO2/Ti(C,N) powders, Russ. J. Inorg. Chem., 2015, vol. 60, no. 8, pp. 987–993.

    Article  Google Scholar 

  11. Kurlov, A.S. and Gusev, A.I., Vacuum annealing of nanocrystalline WC powders, Inorg. Mater., 2012, vol. 48, no. 7, pp. 701–710.

    Article  Google Scholar 

  12. Krasovskii, P.V., Blagoveshchenskii, Yu.V., and Grigorovich, K.V., Determination of oxygen in W–C–Co nanopowders, Inorg. Mater., 2008, vol. 44, no. 9, pp. 954–959.

    Article  CAS  Google Scholar 

  13. Nanda, A.K., Watabe, M., and Kurokawa, K., The sintering kinetics of ultrafine tungsten carbide powders, Ceram. Int., 2011, vol. 37, no. 7, pp. 2643–2654. https://doi.org/10.1016/j.ceramint.2011.04.011

    Article  CAS  Google Scholar 

  14. Buhsmer, C.P. and Crayton, P.H., Carbon self-diffusion in tungsten carbide, J. Mater. Sci., 1971, vol. 6, no. 7, pp. 981–988. https://doi.org/10.1007/BF00549949

    Article  CAS  Google Scholar 

  15. Boldin, M.S., Popov, A.A., Murashov, A.A., Sakharov, N.V., Shotin, S.V., Nokhrin, A.V., Chuvil’deev, V.N., Smetanina, K.E., and Tabachkova, N.Yu., Preparation of fine-grained Al2O3–SiC ceramics by rapid spark plasma sintering: microstructure and mechanical properties, Zh. Tekh. Fiz., 2022, vol. 92, no. 10, pp. 1571–1581.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

In the transmission electron microscopic work, we used equipment at the Materials Research and Metallurgy Shared Research Facilities Center, Moscow Institute of Steel and Alloys (National University of Science and Technology) (Russian Federation Ministry of Science and Higher Education, project no. 075-15-2021-696).

Funding

This work was supported by the Russian Science Foundation, grant no. 20-33-90214.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Lantsev or M. S. Boldin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lantsev, E.A., Nokhrin, A.V., Boldin, M.S. et al. Preparation of Ultrafine-Grained WC–ZrO2 Ceramics by Spark Plasma Sintering. Inorg Mater 59, 537–543 (2023). https://doi.org/10.1134/S0020168523050114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523050114

Keywords:

Navigation