Skip to main content
Log in

Extrinsic Absorption by Copper(II) Ions in Bismuth-Containing Zinc Tellurite Glass

  • Published:
Inorganic Materials Aims and scope

Abstract—

Optical transmission of Cu2+-doped multicomponent glasses in the TeO2−ZnO–Bi2O3 system has been studied by UV spectroscopy. The glasses have been shown to have a strong absorption band in the wavelength range from 350 to 2700 nm, peaking at ~810 nm. For a series of glasses with a given Cu2+ concentration, we evaluated their specific absorption coefficient in this wavelength range—5200 ± 220 dB/(km ppm) at the peak position—and obtained its spectral dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Rivera, V.A.G. and Manzani, D., Technological Advances in Tellurite Glasses, Cham: Springer, 2017.

    Book  Google Scholar 

  2. El-Mallawany, R.A.H., Tellurite Glasses Handbook, Boca Raton: Taylor & Francis, 2011.

    Google Scholar 

  3. Jose, R., Arai, Y., and Ohishi, Y., Raman scattering characteristics of the TBSN-based tellurite glass system as a new Raman gain medium, J. Opt. Soc. Am. B: Opt. Phys., 2007, vol. 24, no. 7, p. 1517. https://doi.org/10.1364/JOSAB.24.001517.xe

    Article  CAS  Google Scholar 

  4. Qin, G., Jose, R., and Ohishi, Y., Design of ultimate gain-flattened O-, E-, and S + C + L ultrabroadband fiber amplifiers using a new fiber Raman gain medium, J. Lightwave Technol., 2007, vol. 25, no. 9, pp. 2727–2738. https://doi.org/10.1109/JLT.2007.902767

    Article  CAS  Google Scholar 

  5. Stegeman, R., Jankovic, L., Kim, H., Rivero, C., Stegeman, G., Richardson, K., Delfyett, P., Guo, Y., Schulte, A., and Cardinal, T., Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica, Opt. Lett., 2003, vol. 28, no. 13, pp. 1126–1128. https://doi.org/10.1364/OL.28.001126

    Article  CAS  PubMed  Google Scholar 

  6. Denker, B.I., Dorofeev, V.V., Galagan, B.I., Koltashev, V.V., Motorin, S.E., Plotnichenko, V.G., and Sverchkov, S.E., 2.3 µm laser action in Tm3+-doped tellurite glass fiber, Laser Phys. Lett., 2019, vol. 16, no. 1, p. 15101. https://doi.org/10.1088/1612-202X/aaeda4

    Article  CAS  Google Scholar 

  7. Dorofeev, V.V., Moiseev, A.N., Churbanov, M.F., Plotnichenko, V.G., Kosolapov, A.F., and Dianov, E.M., Characterization of high-purity tellurite glasses for fiber optics, Specialty Optical Fibers: Advanced Photonics, Washington, DC: Opt. Soc. Am, p. SOMC4.

  8. Zamyatin, O.A., Plotnichenko, V.G., Churbanov, M.F., Zamyatina, E.V., and Karzanov, V.V., Optical properties of zinc tellurite glasses doped with Cu2+ ions, J. Non-Cryst. Solids, 2018, vol. 480, pp. 81–89. https://doi.org/10.1016/j.jnoncrysol.2017.08.025

    Article  CAS  Google Scholar 

  9. Zamyatin, O.A., Churbanov, M.F., Plotnichenko, V.G., Sibirkin, A.A., Fedotova, I.G., and Gavrin, S.A., Specific absorption coefficient of copper in (TeO2)0.80(MoO3)0.20 glass, Inorg. Mater., 2015, vol. 51, no. 12, pp. 1283–1287. https://doi.org/10.1134/S0020168515110163

    Article  CAS  Google Scholar 

  10. Marzuki, A., Ega, F.D., and Saraswati, A., Effect of B2O3 addition on thermal and optical properties of TeO2–ZnO–Bi2O3–TiO2 glasses, Mater. Res. Express, 2022, vol. 9, no. 2, p. 25203. https://doi.org/10.1088/2053-1591/ac55c5

    Article  Google Scholar 

  11. Wang, Y., Dai, S., Chen, F., Xu, T., and Nie, Q., Physical properties and optical band gap of new tellurite glasses within the TeO2–Nb2O5–Bi2O3 system, Mater. Chem. Phys., 2009, vol. 113, no. 1, pp. 407–411. https://doi.org/10.1016/j.matchemphys.2008.07.117

    Article  CAS  Google Scholar 

  12. Kundu, R.S., Dhankhar, S., Punia, R., Nanda, K., and Kishore, N., Bismuth modified physical, structural and optical properties of mid-IR transparent zinc boro-tellurite glasses, J. Alloys Compd., 2014, vol. 587, no. 1, pp. 66–73. https://doi.org/10.1016/j.jallcom.2013.10.141

    Article  CAS  Google Scholar 

  13. Lin, S.-B., Wang, P.-F., She, J.-B., Guo, H.-T., Xu, S.-N., Zhao, P.-F., Yu, C.-L., Liu, C.-X., and Peng, B., Spectroscopic and thermal properties of Yb3+ doped TeO2–Bi2O3–Nb2O5 based tellurite glasses, J. Lumin., 2014, vol. 153, pp. 29–33. https://doi.org/10.1016/j.jlumin.2014.02.031

    Article  CAS  Google Scholar 

  14. Gao, G., Hu, L., Fan, H., Wang, G., Li, K., Feng, S., Fan, S., Chen, H., Pan, J., and Zhang, J., Investigation of 2.0 μm emission in Tm3+ and Ho3+ co-doped TeO2–ZnO–Bi2O3 glasses, Opt. Mater., 2009, vol. 32, no. 2, pp. 402–405. https://doi.org/10.1016/j.optmat.2009.07.003

    Article  CAS  Google Scholar 

  15. Kozak, A.J., Wieczorek-Ciurowa, K., and Kozak, A., The thermal transformations in Zn(NO3)2‒H2O (1 : 6) system, J. Therm. Anal. Calorim., 2003, vol. 74, no. 2, pp. 497–502. https://doi.org/10.1023/B:JTAN.0000005186.15474.be

    Article  CAS  Google Scholar 

  16. Małecki, A., Gajerski, R., Łabuś, S., Prochowska-Klisch, B., and Wojciechowski, K.T., Mechanism of thermal decomposition of d-metals nitrates hydrates, J. Therm. Anal. Calorim., 2000, vol. 60, no. 1, pp. 17–23. https://doi.org/10.1023/A:1010155931266

    Article  Google Scholar 

  17. Živković, Ž.D., Živković, D.T., and Grujičić, D.B., Kinetics and mechanism of the thermal decomposition of M(NO3)2·nH2O (M = Cu, Co, Ni), J. Therm. Anal. Calorim., 1998, vol. 53, no. 2, pp. 617–623. https://doi.org/10.1023/A:1010170231923

    Article  Google Scholar 

  18. Nikolic, R., Zec, S., Maksimovic, V., and Mentus, S., Physico-chemical characterization of thermal decomposition course in zinc nitrate–copper nitrate hexahydrates, J. Therm. Anal. Calorim., 2006, vol. 86, no. 2, pp. 423–428. https://doi.org/10.1007/s10973-005-7237-z

    Article  CAS  Google Scholar 

  19. Ahmed, M.A.K., Fjellvåg, H., and Kjekshus, A., Synthesis, structure and thermal stability of tellurium oxides and oxide sulfate formed from reactions in refluxing sulfuric acid, J. Chem. Soc., Dalton Trans., 2000, no. 24, pp. 4542–4549. https://doi.org/10.1039/B005688J

  20. Rosick, J., Loub, J., and Pavel, J., Ber die thermische Zersetzung der Orthotellursure und die Verbindung Te2O5, Z. Anorg. Allg. Chem., 1965, vol. 334, nos. 5–6, pp. 312–320. https://doi.org/10.1002/zaac.19653340512

    Article  Google Scholar 

  21. Bart, J.C.J., Bossi, A., Perissinoto, P., Castellan, A., and Giordano, N., Some observations on the thermochemistry of telluric acid, J. Therm. Anal., 1975, vol. 8, no. 2, pp. 313–327. https://doi.org/10.1007/BF01904009

    Article  CAS  Google Scholar 

  22. Bayer, G., On the polymorphism of orthotelluric acid, H6TeO6, J. Less-Common Met., 1968, vol. 16, no. 3, pp. 215–222. https://doi.org/10.1016/0022-5088(68)90017-9

    Article  CAS  Google Scholar 

  23. Missen, O.P., Mills, S.J., Canossa, S., Hadermann, J., Nénert, G., Weil, M., Libowitzky, E., Housley, R.M., Artner, W., Kampf, A.R., Rumsey, M.S., Spratt, J., Momma, K., and Dunstan, M.A., Polytypism in mcalpineite: a study of natural and synthetic Cu3TeO6, Acta Crystallogr., Sect. B: Struct. Sci., 2022, vol. 78, no. 1, pp. 20–32. https://doi.org/10.1107/S2052520621013032

    Article  CAS  Google Scholar 

  24. Falck, L., Lindqvist, O., Mark, W., Philippot, E., and Moret, J., The crystal structure of CuTeO4, Acta Crystallogr., Sect. B: Struct. Sci., 1978, vol. 34, no. 5, pp. 1450–1453. https://doi.org/10.1107/S0567740878005889

    Article  Google Scholar 

  25. Zhu, X., Wang, Z., Su, X., and Vilarinho, P.M., New Cu3TeO6 ceramics: phase formation and dielectric properties, ACS Appl. Mater. Interfaces, 2014, vol. 6, no. 14, pp. 11326–11332. https://doi.org/10.1021/am501742z

    Article  CAS  PubMed  Google Scholar 

  26. Kamalaker, V., Upender, G., Prasad, M., and Mouli, V.C., Infrared, ESR and optical absorption studies of Cu2+ ions doped in TeO2−ZnO−NaF glass system, Indian J. Pure Appl. Phys., 2010, vol. 48, no. 10, pp. 709–715.

    CAS  Google Scholar 

  27. Gayathri Pavani, P., Vijaya Kumar, R., and Chandra Mouli, V., Characterization of ZnO based boro tellurite glass system, Phys. Chem. Glasses, 2016, vol. 57, no. 2, pp. 104–110. https://doi.org/10.13036/17533562.57.2.013

    Article  Google Scholar 

  28. Hosono, H., Kawazoe, H., and Kanazawa, T., ESR and optical absorption of Cu2+ in Na2O·SiO2 glasses, J. Non-Cryst. Solids, 1979, vol. 33, no. 1, pp. 103–115. https://doi.org/10.1016/0022-3093(79)90099-1

    Article  CAS  Google Scholar 

  29. Upender, G., Devi, C.S., Kamalaker, V., and Mouli, V.C., The structural and spectroscopic investigations of ternary tellurite glasses, doped with copper, J. Alloys Compd., 2011, vol. 509, no. 19, pp. 5887–5892. https://doi.org/10.1016/j.jallcom.2011.03.001

    Article  CAS  Google Scholar 

  30. Ramadevudu, G., Shareefuddin, M., Sunitha Bai, N., Lakshmipathi Rao, M., and Narasimha Chary, M., Electron paramagnetic resonance and optical absorption studies of Cu2+ spin probe in MgO–Na2O–B2O3 ternary glasses, J. Non-Cryst. Solids, 2000, vol. 278, nos. 1–3, pp. 205–212. https://doi.org/10.1016/S0022-3093(00)00255-6

    Article  CAS  Google Scholar 

  31. Sreedhar, B., Rao, J.L., and Lakshman, S.V.J., Electron spin resonance and optical absorption spectra of Cu2+ ions in alkali zinc borosulphate glasses, J. Non-Cryst. Solids, 1990, vol. 124, nos. 2–3, pp. 216–220. https://doi.org/10.1016/0022-3093(90)90265-N

    Article  CAS  Google Scholar 

  32. Narendra, G.L., Sreedhar, B., Rao, J.L., and Lakshman, S.V.J., Electron spin resonance and optical absorption spectra of Cu2+ ions in Na2SO4–ZnSO4 glasses, J. Mater. Sci., 1991, vol. 26, no. 19, pp. 5342–5346. https://doi.org/10.1007/BF01143231

    Article  CAS  Google Scholar 

  33. Bae, B.-S. and Weinberg, M.C., Optical absorption of copper phosphate glasses in the visible spectrum, J. Non-Cryst. Solids, 1994, vol. 168, no. 3, pp. 223–231. https://doi.org/10.1016/0022-3093(94)90333-6

    Article  CAS  Google Scholar 

  34. Chakradhar, R.P.S., Ramesh, K.P., Rao, J.L., and Ramakrishna, J., Mixed alkali effect in borate glasses – electron paramagnetic resonance and optical absorption studies in Cu2+ doped xNa2O–(30–x)K2O–70B2O3 glasses, J. Mater. Sci., 2003, vol. 15, no. 9, pp. 1469–1486. https://doi.org/10.1088/0953-8984/15/9/311

    Article  CAS  Google Scholar 

  35. Rao, L.S., Reddy, M.S., Rao, D.K., and Veeraiah, N., Influence of redox behavior of copper ions on dielectric and spectroscopic properties of Li2O–MoO3–B2O3:CuO glass system, Solid State Sci., 2009, vol. 11, no. 2, pp. 578–587. https://doi.org/10.1016/j.solidstatesciences.2008.06.022

    Article  CAS  Google Scholar 

  36. Rayan, D.A., Elbashar, Y.H., Rashad, M.M., and El-Korashy, A., Optical spectroscopic analysis of cupric oxide doped barium phosphate glass for bandpass absorption filter, J. Non-Cryst. Solids, 2013, vol. 382, pp. 52–56. https://doi.org/10.1016/j.jnoncrysol.2013.10.002

    Article  CAS  Google Scholar 

  37. Stefan, R., Culea, E., and Pascuta, P., The effect of copper ions addition on structural and optical properties of zinc borate glasses, J. Non-Cryst. Solids, 2012, vol. 358, no. 4, pp. 839–846. https://doi.org/10.1016/j.jnoncrysol.2011.12.079

    Article  CAS  Google Scholar 

  38. Takebe, H., Nishimoto, S., and Kuwabara, M., Thermal and optical properties of CuO–BaO–B2O3–P2O5 glasses, J. Non-Cryst. Solids, 2007, vol. 353, nos. 13–15, pp. 1354–1357. https://doi.org/10.1016/j.jnoncrysol.2006.09.044

    Article  CAS  Google Scholar 

  39. Schultz, P.C., Optical absorption of the transition elements in vitreous silica, J. Am. Ceram. Soc., 1974, vol. 57, no. 7, pp. 309–313. https://doi.org/10.1111/j.1151-2916.1974.tb10908.x

    Article  CAS  Google Scholar 

  40. Newns, G.R., Pantelis, P., Wilson, J.L., Uffen, R.W.J., and Worthington, R., Absorption losses in glasses and glass fibre waveguides, Optoelectronics, 1973, vol. 5, no. 4, pp. 289–296. https://doi.org/10.1007/BF02057128

    Article  CAS  Google Scholar 

  41. Spierings, G.A.C.M., Optical absorption of transition metals in alkali lime germanosilicate glasses, J. Mater. Sci., 1979, vol. 14, no. 10, pp. 2519–2521. https://doi.org/10.1007/BF00737045

    Article  CAS  Google Scholar 

  42. Upender, G., Prasad, M., and Mouli, V.C., Vibrational, EPR and optical spectroscopy of the Cu2+ doped glasses with (90–x)TeO2–10GeO2xWO3 (7.5 ≤ x ≤ 30) composition, J. Non-Cryst. Solids, 2011, vol. 357, no. 3, pp. 903–909. https://doi.org/10.1016/j.jnoncrysol.2010.12.001

    Article  CAS  Google Scholar 

  43. France, P.W., Carter, S.W., and Williams, J.R., Effects of atmosphere control on the oxidation states of 3d transition metals in ZrF4 based glasses, Mater. Sci. Forum, 1985, vols. 5–6, pp. 353–359. doi 10.4028/www.scientific.net/MSF.5-6.353

  44. Zamyatin, O.A., Leksakov, D.A., and Nosov, Z.K., Extrinsic absorption by copper(II) ions in molybdenum-containing zinc tellurite glass, Inorg. Mater., 2021, vol. 57, no. 11, pp. 1178–1183. https://doi.org/10.1134/S0020168521110145

    Article  CAS  Google Scholar 

Download references

Funding

The development of the process for the preparation of glass and mixed oxides was supported by the Russian Science Foundation (project no. 22-73-10099).

The work related to investigation of the optical absorption by copper ions was supported by the Russian Federation Ministry of Science and Higher Education (state research target, basic research, project no. 0729-2020-0039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Zamyatin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krasnov, M.V., Zamyatin, O.A. Extrinsic Absorption by Copper(II) Ions in Bismuth-Containing Zinc Tellurite Glass. Inorg Mater 59, 518–525 (2023). https://doi.org/10.1134/S0020168523050096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523050096

Keywords:

Navigation