Skip to main content
Log in

Preparation and Properties of Transparent Scandium Oxide-Modified Nd:YAG Ceramics

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied the effect of Sc2O3 as a modifying additive on the formation of weakly agglomerated single-phase nanopowders of doped yttrium aluminum garnet with the laser composition Y2.97Nd0.03ScAl4O12 (Nd:YSAG), the fundamental aspects of the preparation of transparent ceramics from the modified powders, and the microstructure and properties of the ceramics. Carbonate precursor powders with a specific surface area of 285 m2/g, synthesized via quantitative chemical coprecipitation of metal cations from an aqueous solution of hydrochloric acid salts in the presence of high molecular weight surfactants have been characterized by high-temperature X-ray diffraction. The results demonstrate for the first time that, during the thermal decomposition of the carbonate precursor, the structure of Nd:YSAG is formed in the temperature range 850–1000°C in the form of a metastable nonstoichiometric cubic aluminate, (Y,Nd)ScxAl1–xO3, with a garnet-like structure. In the range 1100–1150°C, it reacts with the Al2O3 resulting from the decomposition of the precursor to form Nd:YSAG. The synthesized weakly agglomerated spherical nanoparticles and submicron particles with a controlled stable size in the range 100 to 200 nm were vacuum-sintered to give transparent ceramics with an average grain size of 3 μm and high transmission (up to 78%) in the visible spectral region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Xiao, Z., Yu, S., Li, Y., Ruan, S., Kong, L.B., Huang, Q., Huang, Z., Zhou, K., Su, H., Yao, Z., Que, W., Liu, Y., Zhang, T., Wang, J., Liu, P., Shen, D., Allix, M., Zhang, J., and Tang, D., Materials development and potential applications of transparent ceramics: a review, Mater. Sci. Eng., R, 2020, vol. 139, p. 66. https://doi.org/10.1016/j.mser.2019.100518

    Article  Google Scholar 

  2. Wang, S.F., Zhang, J., Luo, D.W., Gu, F., Tang, D.Y., Dong, Z.L., Tan, G.E.B., Que, W.X., Zhang, T.S., Li, S., and Kong, L.B., Transparent ceramics: processing, materials and applications, Prog. Solid State Chem., 2013, vol. 41, no. 1, pp. 20–54. https://doi.org/10.1016/j.progsolidstchem.2012.12.002

    Article  CAS  Google Scholar 

  3. Li, J.-G., Ikegami, T., Lee, J.-H., Mori, T., and Yajima, Y., Co-precipitation synthesis and sintering of yttrium aluminum garnet (YAG) powders: the effect of precipitant, J. Eur. Ceram. Soc., 2000, vol. 20, no. 14, pp. 2395–2405. https://doi.org/10.1016/S0955-2219(00)00116-3

    Article  CAS  Google Scholar 

  4. Tel’nova, G.B., Kolomiets, T.Yu., Konovalov, A.A., Ashmarin, A.A., Dudenkov, I.V., and Solntsev, K.A., Phase transformation upon the synthesis of Y3Al5O12:Nd, Russ. J. Inorg. Chem., 2015, vol. 60, no. 2, pp. 127–136. https://doi.org/10.1134/S0036023615020187

    Article  CAS  Google Scholar 

  5. Tel’nova, G.B., Kolomiets, T.Yu., Sitnikov, A.I., and Solntsev, K.A., Effect of carbonate precursor synthesis conditions on the formation of monodisperse Nd:YAG nanopowders, Inorg. Mater., 2015, vol. 51, no. 2, pp. 142–151. https://doi.org/10.1134/S0020168515020168

    Article  CAS  Google Scholar 

  6. Kolomiets, T.Yu., Tel’nova, G.B., Ashmarin, A.A., Chelpanov, V.I., and Solntsev, K.A., Synthesis and sintering of submicron Nd:YAG particles prepared from carbonate precursors, Inorg. Mater., 2017, vol. 53, no. 8, pp. 874–882. https://doi.org/10.1134/S0020168517080076

    Article  CAS  Google Scholar 

  7. Li, J.-G., Ikegami, T., Lee, J.-H., and Mori, T., Well-sinterable Y3Al5O12 powder from carbonate precursor, J. Mater. Res., 2000, vol. 15, no. 7, pp. 1514–1523. https://doi.org/10.1557/JMR.2000.0217

    Article  CAS  Google Scholar 

  8. Gandhi, A.S. and Levi, C.G., Phase selection in precursor-derived yttrium aluminum garnet and related Al2O3–Y2O3 compositions, J. Mater. Res., 2005, vol. 20, no. 4, pp. 1017–1025. https://doi.org/10.1557/JMR.2005.0133

    Article  CAS  Google Scholar 

  9. Allik, T.H., Morrison, C.A., Gruber, J.B., and Kokta, M.R., Crystallography, spectroscopic analysis, and lasing properties of Nd3+:Y3Sc2Al3O12, Phys. Rev. B: Condens. Matter. Mater. Phys., 1990, vol. 41, no. 1, pp. 21–30. https://doi.org/10.1103/PhysRevB.41.21

    Article  CAS  Google Scholar 

  10. Feng, T., Shi, J., Chen, J., and Jiang, D., Fluorescence emission enhancement of transparent Nd:YSAG ceramics by Sc2O3 doping, J. Opt. Soc. Am. B: Opt. Phys., 2005, vol. 22, no. 10, pp. 2134–2137. https://doi.org/10.1364/JOSAB.22.002134

    Article  CAS  Google Scholar 

  11. Liu, Y., Hu, S., Zhang, Y., Wang, Z., Zhou, G., and Wang, S., Crystal structure evolution and luminescence property of Ce3+-doped Y2O3–Al2O3–Sc2O3 ternary ceramics, J. Eur. Ceram. Soc., 2020, vol. 40, no. 3, pp. 840–846. https://doi.org/10.1016/j.jeurceramsoc.2019.10.022

    Article  CAS  Google Scholar 

  12. Feng, Y., Toci, G., Patrizi, B., Pirri, A., Hu, Z., Chen, X., Wei, J., Pan, H., Li, X., Zhang, X., Su, S., Vannini, M., and Li, J., Fabrication, microstructure, and optical properties of Tm:Y3ScAl4O12 laser ceramics, J. Am. Ceram. Soc., 2020, vol. 103, no. 3, pp. 1819–1830. https://doi.org/10.1111/jace.16873

    Article  CAS  Google Scholar 

  13. Tarala, V.A., Shama, M.S., Chikulina, I.S., Kuznetsov, S.V., Malyavin, F.F., Vakalov, D.S., Kravtsov, A.A., and Pankov, M.A., Estimation of Sc3+ solubility in dodecahedral and octahedral sites in YSAG:Yb, J. Am. Ceram. Soc., 2019, vol. 102, no. 8, pp. 4862–4873. https://doi.org/10.1111/jace.16294

    Article  CAS  Google Scholar 

  14. Feng, Y., Toci, G., Pirri, A., Patrizi, B., Hu, Z., Wei, J., Pan, H., Zhang, X., Li, X., Su, S., Vannini, M., and Li, J., Fabrication, microstructure, and optical properties of Yb:Y3ScAl4O12 transparent ceramics with different doping levels, J. Am. Ceram. Soc., 2020, vol. 103, no. 1, pp. 224–234. https://doi.org/10.1111/jace.16691

    Article  CAS  Google Scholar 

  15. Shoji, I., Kurimura, S., Sato, Y., Taira, T., Ikesue, A., and Yoshida, K., Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics, Appl. Phys. Lett., 2000, vol. 77, no. 7, pp. 939–941. https://doi.org/10.1063/1.1289039

    Article  CAS  Google Scholar 

  16. Yamaguchi, O., Takeoka, K., Hirota, K., Takano, H., and Hayashida, A., Formation of alkoxy-derived yttrium aluminium oxides, J. Mater. Sci., 1992, vol. 27, no. 5, pp. 1261–1264. https://doi.org/10.1007/BF01142034

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, state research target no. 075-01176-23-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Kolomiets.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolomiets, T.Y., Tel’nova, G.B., Ashmarin, A.A. et al. Preparation and Properties of Transparent Scandium Oxide-Modified Nd:YAG Ceramics. Inorg Mater 59, 530–536 (2023). https://doi.org/10.1134/S0020168523050072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523050072

Keywords:

Navigation