Skip to main content
Log in

Kinetics and Mechanism of Calcium Hydride Synthesis of the Intermetallic Compound Cr2Ta

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper presents results on the kinetics of the synthesis of the Cr2Ta intermetallic compound via calcium hydride reduction and the influence of various technological parameters on this process. We have observed anomalous Cr2Ta formation kinetics, in particular, an explosive increase in the amount of this phase as a certain synthesis temperature is reached. The apparent activation energy for the calcium hydride synthesis of the Cr2Ta intermetallic compound has been determined to be ~291 kJ/mol, approaching the activation energy for heterodiffusion in various Laves phases (Cr2Ti, Cr2Nb, Co2Nb, and Fe2Ti). The results obtained in this study are used to gain insight into the mechanism of the calcium hydride synthesis of Cr2Ta. Calcium hydride reduction has been shown to be potentially attractive for the preparation of refractory intermetallics. Further work in this direction will make it possible to obtain high-quality powder and compact articles from it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. Bei, H., Pharr, G.M., and George, E.P., A review of directionally solidified intermetallic composites for high-temperature structural applications, J. Mater. Sci., 2004, vol. 39, pp. 3975–3984. https://doi.org/10.1023/B:JMSC.0000031479.32138.84

    Article  CAS  Google Scholar 

  2. Anton, D.L., Shah, D.M., Duhl, D.N., and Giamei, A.F., Selecting high-temperature structural intermetallic compounds: the engineering approach, JOM, 1989, no. 9, pp. 12–16. https://doi.org/10.1007/BF03220324

  3. Duquette, D.J. and Stoloff, N.S., Aerospace applications of intermetallics, Key. Eng. Mater., 1992, vols. 77–78, pp. 289–304. https://doi.org10.4028/www.scientific.net/KEM.77-78.289

  4. Liu, C.T., Recent advances in ordered intermetallics, Mater. Chem. Phys., 1995, vol. 42, no. 2, pp. 77–86.

    Article  CAS  Google Scholar 

  5. Meier, G.H. and Pettit, F.S., High temperature oxidation and corrosion of intermetallic compounds, Mater. Sci. Technol., 1992, vol. 8, no. 4, pp. 331–338. https://doi.org/10.1179/mst.1992.8.4.331

    Article  CAS  Google Scholar 

  6. Intermetallic Compounds. Structural Applications of Intermetallic Compounds, Westbrook, J.H. and Fleischer, R.L., Eds., New York: Wiley, 2000, vol. 3.

    Google Scholar 

  7. Brady, M.P., Tortorelli, P.F., and Walker, L.R., Correlation of alloy microstructure with oxidation behavior in chromia-forming intermetallic-reinforced Cr alloys, Mater. High Temp., 2000, vol. 17, no. 2, pp. 235–241. https://doi.org/10.1179/mht.2000.17.2.009

    Article  CAS  Google Scholar 

  8. Brady, M.P., Zhu, J.H., Liu, C.T., Tortorelli, P.F., and Walker, LR., Oxidation resistance and mechanical properties of Laves phase reinforced Cr in-situ composites, Intermetallics, 2000, vol. 8, pp. 1111–1118. https://doi.org/10.1016/S0966-9795(00)00046-7

    Article  CAS  Google Scholar 

  9. Yudin, S.N., Kasimtsev, A.V., Volodko, S.S., and Guryanov, A.M., Metallothermal synthesis of the Laves phase TaCr2 from oxide raw materials, Tsvetn. Met., 2020, no. 11, pp. 48–53. https://doi.org/10.17580/tsm.2020.11.07

  10. Venkatraman, M. and Neumann, J.P., The Cr–Ta (chromium–tantalum) system, Bull. Alloy Phase Diagrams, 1987, vol. 8, no. 2, pp. 112–116. https://doi.org/10.1007/BF02873190

    Article  CAS  Google Scholar 

  11. Shelekhov, E.V. and Sviridova, T.A., Programs for X‑ray analysis of polycrystals, Met. Sci. Heat Treat., 2000, vol. 42, no. 8, pp. 309–313. https://doi.org/10.1007/BF02471306

    Article  CAS  Google Scholar 

  12. Rietveld, H.M., A profile refinement method for nuclear and magnetic structures, J. Appl. Crystallogr., 1969, vol. 2, no. 2, pp. 65–71. https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  13. Kasimtsev, A.V. and Zhigunov, V.V., Structural and phase transformations in the preparation of intermetallic powders, Izv. Vyssh. Uchebn. Zaved., Poroshk. Metall. Funkts. Pokrytiya, 2009, no. 3, pp. 5–12.

  14. Naoi, D. and Kajihara, M., Growth behavior of Fe2Al5 during reactive diffusion between Fe and Al at solid-state temperatures, Mater. Sci. Eng., A, 2007, vol. 459, nos. 1–2, pp. 375–382. https://doi.org/10.1016/j.msea.2007.01.099

    Article  CAS  Google Scholar 

  15. Horiuchi, S. and Blanchard, R., Boron diffusion in polycrystalline silicon layers, Solid-State Electron., 1975, vol. 18, no. 6, pp. 529–532. https://doi.org/10.1016/0038-1101(75)90029-5

    Article  CAS  Google Scholar 

  16. Liu, J.C., Mayer, J.W., and Barbour, J.C., Kinetics of NiAl3 and Ni2Al3 phase growth on lateral diffusion couples, J. Appl. Phys., 1988, vol. 64, no. 2, pp. 656–662. https://doi.org/10.1063/1.341957

    Article  CAS  Google Scholar 

  17. Meerson, G.A. and Kolchin, O.P., On the mechanism of calcium hydride reduction of zirconium and titanium oxides, At. Energ., 1957, vol. 2, no. 3, pp. 253–259.

    CAS  Google Scholar 

  18. Kasimtsev, A.V. and Levinskii, Yu.V., Gidridno-kal’tsievye poroshki metallov, intermetallidov, tugoplavkikh soedinenii i kompozitsionnykh materialov (Calcium Hydride Powders of Metals, Intermetallics, Refractory Compounds, and Composite Materials), Moscow: MITKhT, 2012.

  19. Dupin, N. and Ansara, L., Thermodynamic assessment of the Cr–Ta system, J. Phase Equilib., 1993, vol. 14, no. 4, pp. 451–456. https://doi.org/10.1007/BF02671963

    Article  CAS  Google Scholar 

  20. Dean, J.A., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1999, 15 ed.

    Google Scholar 

  21. Rogachev, A.S., Gryadunov, A.N., Kochetov, N.A., Schukin, A.S., Baras, F., and Politano, O., High-entropy-alloy binder for TiC-based cemented carbide by SHS method, Int. J. Self-Propag. High-Temp. Synth., 2019, vol. 28, no. 3, pp. 196–198. https://doi.org/10.3103/S1061386219030117

    Article  Google Scholar 

  22. Rogachev, A.S., Vadchenko, S.G., Kochetov, N.A., Kovalev, D.Y., Kovalev, I.D., Shchukin, A.S., Gryadunov, A.N., Baras, F., and Politano, O., Combustion synthesis of TiC-based ceramic–metal composites with high entropy alloy binder, J. Eur. Ceram. Soc., 2020, vol. 40, no. 7, pp. 2527–2532. https://doi.org/10.1016/j.jeurceramsoc.2019.11.059

    Article  CAS  Google Scholar 

  23. Vignoul, G.E., Tien, J.K., and Sanchez, J.M., Characterization of the deformation behavior of the Cr2Nb ordered intermetallic system, Mater. Sci. Eng., A, 1993, vol. 170, nos. 1–2, pp. 177–183.

    Article  Google Scholar 

  24. Baumann, W., Leineweber, A., and Mittemeijer, E.J., The kinetics of a polytypic Laves phase transformation in TiCr2, Intermetallics, 2011, vol. 19, no. 4, pp. 526–535. https://doi.org/10.1016/j.intermet.2010.11.027

    Article  CAS  Google Scholar 

  25. Baheti, V.A., Roy, S., Ravi, R., and Paul, A., Interdiffusion and the phase boundary compositions in the Co–Ta system, Intermetallics, 2013, vol. 33, pp. 87–91. https://doi.org/10.1016/j.intermet.2012.09.020

    Article  CAS  Google Scholar 

  26. Denkinger, M. and Mehrer, H., Diffusion in the C15-type intermetallic Laves phase NbCo2, Philos. Mag. A, 2000, vol. 80, no. 5, pp. 1245–1263. https://doi.org/10.1080/01418610008212113

    Article  CAS  Google Scholar 

  27. Wein, M., Levin, L., and Nadiv, S., The mechanism of mixing and reactive diffusion in intermetallics (TiFe2, TiCr2), Philos. Mag. A, 1978, vol. 38, no. 1, pp. 81–96. https://doi.org/10.1080/01418617808239219

    Article  CAS  Google Scholar 

  28. Baba, M., Ono, Y., and Suzuki, R.O., Tantalum and niobium powder preparation from their oxides by calciothermic reduction in the molten CaCl2, J. Phys. Chem. Solids, 2005, vol. 66, nos. 2–4, pp. 466–470. https://doi.org/10.1016/j.jpcs.2004.06.042

    Article  CAS  Google Scholar 

  29. Suzuki, R.O., Ikezawa, M., Okabe, T.H., Oishi, T., and Ono, K., Preparation of TiAl and Ti3Al powders by calciothermic reduction of oxides, Mater. Trans., JIM, 1990, vol. 31, no. 1, pp. 61–68. https://doi.org/10.2320/matertrans1989.31.61

    Article  CAS  Google Scholar 

  30. Suzuki, R.O., Tatemoto, K., and Kitagawa, H., Direct synthesis of the hydrogen storage V–Ti alloy powder from the oxides by calcium co-reduction, J. Alloys Compd., 2004, vol. 385, nos. 1–2, pp. 173–180. https://doi.org/10.1016/j.jallcom.2004.04.137

    Article  CAS  Google Scholar 

  31. Okabe, T.H., Fujiwara, K., Oishi, T., and Ono, K., A fundamental study on the preparation of niobium aluminide powders by calciothermic reduction, Metall. Trans. B, 1992, vol. 23, no. 4, pp. 415–421. https://doi.org/10.1007/BF02649659

    Article  Google Scholar 

  32. Wu, K.H., Wang, Y., Chou, K.-C., and Zhang, G.H., Low-temperature synthesis of single-phase refractory metal compound carbides, Int. J. Refract. Met. Hard Mater., 2021, vol. 98, p. 105567. https://doi.org/10.1016/j.ijrmhm.2021.105567

    Article  CAS  Google Scholar 

  33. Venkatraman, M. and Neumann, J.P., The Ca–Cr (calcium–chromium) system, Bull. Alloy Phase Diagrams, 1985, vol. 6, no. 4, p. 335. https://doi.org/10.1007/BF02880513

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 22-23-20113) and the Tula Oblast Committee for Science and Innovations (grant no. 3, April 19, 2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Guryanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guryanov, A.M., Yudin, S.N., Kasimtsev, A.V. et al. Kinetics and Mechanism of Calcium Hydride Synthesis of the Intermetallic Compound Cr2Ta. Inorg Mater 59, 463–474 (2023). https://doi.org/10.1134/S0020168523050059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523050059

Keywords:

Navigation