Skip to main content
Log in

Hot Isostatic Pressing-Induced Structural Changes in MgAl2O4 Ceramics

  • Published:
Inorganic Materials Aims and scope

Abstract—

Magnesium aluminate spinel (MgAl2O4) ceramics have been subjected to hot isostatic pressing. The process led to a 0.28% increase in the density of the ceramics compared to samples prepared by primary hot pressing. IR spectroscopy has been used to evaluate structural changes in the densified material. In the IR reflection spectrum measured from 40 to 1000 cm–1, the increase in density showed up as a decrease in the intensity of some bands due to isolated vibrational modes in the MgO4 and AlO4 tetrahedra. The effect was attributed to vibrational mode mixing in the tetrahedral structural units in the densified ceramics. This finding indicates that consolidation of the material is accompanied by an increase in the inner connectivity of crystallites. At the same time, the frequency and intensity of the stretching modes of the Al–O groups in the AlO6 octahedra remained unchanged after isostatic pressing, suggesting that the heat treatment caused no stoichiometric distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. Ganesh, I., A review on magnesium aluminate (MgAl2O4) spinel: synthesis, processing and applications, Int. Mater. Rev., 2013, vol. 58, no. 2, pp. 63–112. https://doi.org/10.1179/1743280412Y.0000000001

    Article  CAS  Google Scholar 

  2. Gabelkov, S.V., Tarasov, R.V., Poltavtsev, N.S., Kurilo, Yu.P., Starolat, M. P., Andrievskaya, N.F., Mironova, A.G., Dedovskaya, E.G., Ditvinenko, L.M., and Belkin F.V., Phase evolution during low-temperature synthesis of MgAl2O4, Inorg. Mater., 2007, vol. 43, no. 4, pp. 421–428.

    Article  Google Scholar 

  3. Garner, F.A., Hollenberg, G.W., Hoobs, F.D., Ryan, J.L., Li, Z., Black, C.A., and Bradt, R.C., Dimension stability, optical and elastic properties of MgAl2O4 spinel irradiated in FFTF to very high exposures, J. Nucl. Mater., 1994, vols. 212–215, pp. 1087–1090. https://doi.org/10.1016/0022-3115(94)91000-6

    Article  Google Scholar 

  4. Sokol, M., Ratzker, B., Kalabukhov, S., Dariel, M.P., Galun, E., and Frage, N., Transparent polycrystalline magnesium aluminate spinel fabricated by spark plasma sintering, Adv. Mater., 2018, vol. 30, p. 1706283. https://doi.org/10.1002/adma.201706283

    Article  CAS  Google Scholar 

  5. Gajdowski, K., Böhmler, J., Lorgouilloux, Y., Lemonnier, S., d’Astorg, ., Barraud, E., and Leriche, A., Influence of post-HIP temperature on microstructural and optical properties of pure MgAl2O4 spinel: from opaque to transparent ceramics, J. Eur. Ceram. Soc., 2017, vol. 37, pp. 5347–5351. https://doi.org/10.1016/j.jeurceramsoc.2017.07.031

    Article  CAS  Google Scholar 

  6. Tsai, D.S., Wang, C.T., and Yang, S.J., Hot isostatic pressing of MgAl2O4 spinel infrared windows, Mater. Manuf. Processes, 1994, vol. 9, pp. 709–719. https://doi.org/10.1080/10426919408934941

    Article  CAS  Google Scholar 

  7. Shi, Zh., Zhao, Q., Guo, B., Ji, T., and Wang, H., A review on processing polycrystalline magnesium aluminate spinel (MgAl2O4): sintering techniques, material properties and machinability, Mater. Des., 2020, vol. 193, p. 10858. https://doi.org/10.1016/j.matdes.2020.108858

    Article  CAS  Google Scholar 

  8. Gilde, G., Patel, P., Patterson, P., Blodgett, D., Duncan, D., and Hahn, D., Evaluation of hot pressing and hot isostatic pressing parameters on the optical properties of spinel, J. Am. Ceram. Soc., 2005, vol. 88, pp. 2747–2751. https://doi.org/10.1111/j.1551-2916.2005.00527.x

    Article  CAS  Google Scholar 

  9. Tolstikova, D.V., Mikhailov, M.D., and Smirnov, V.M., Features of the synthesis of aluminum–magnesium spinel nanoparticles in the potassium chloride melt, Russ. J. Gen. Chem., 2014, vol. 84, no. 10, pp. 2043–2044.

    Article  CAS  Google Scholar 

  10. Chmel, A., Eronko, S.B., Kondyrev, A.M., and Nazarova, V.Ya., Optical resistance of sapphire, J. Mater. Sci., 1993, vol. 28, pp. 4673–4680. https://doi.org/10.1007/BF00414257

    Article  CAS  Google Scholar 

  11. Barker, A.S., Infrared lattice vibrations and dielectric dispersion in corundum, Phys. Rev., 1963, vol. 132, pp. 1474–1481. https://doi.org/10.1103/PhysRev.132.1474

    Article  CAS  Google Scholar 

  12. Petrik V.I., Bronevye opticheskie materialy. Shpinel’ (Optical Armor Materials: Spinel) Irkutsk: Oblastnaya Tipografiya No. 1, 2011, p. 335.

  13. Slotznick, S.P. and Shim, S.-H., In situ Raman spectroscopy measurements of MgAl2O4 spinel up to 1400°C, Am. Mineral., 2008, vol. 93, pp. 470–476. https://doi.org/10.2138/am.2008.2687

    Article  CAS  Google Scholar 

  14. Fu, P., Lu, W., Lei, W., Wu, K., Xu, Y., and Wu, J., Thermal stability and microstructure characterization of MgAl2O4 nanoparticles synthesized by reverse microemulsion method, Mater. Res., 2013, vol. 16, pp. 844–849. https://doi.org/10.1590/S1516-14392013005000062

    Article  CAS  Google Scholar 

  15. Ahmad, S.M., Hussain, T., Ahmad, R., Siddiqui, J., and Ali, D., Synthesis and characterization of magnesium aluminate (MgAl2O4) spinel (MAS) thin films, Mater. Res. Express, 2018, vol. 5, p. 016415. https://doi.org/10.1088/2053-1591/aaa828

    Article  CAS  Google Scholar 

  16. Radishevskaya, N.I., Nazarova, A.Yu., Lvov, O.V., Kasatsky, N.G., and Kitler, V.D., Synthesis of magnesium aluminate spinel in the MgO–Al2O3–Al system using the SHS method, J. Phys.: Conf. Ser., 2019, vol. 1214, p. 012019. https://doi.org/10.1088/1742-6596/1214/1/012019

    Article  CAS  Google Scholar 

  17. Radishevskaya, N., Lepakova, O., Karakchieva, N., Nazarova, A., Afanasiev, N., Godymchuk, A., and Gusev, A., Self-propagating high temperature synthesis of TiB2–MgAl2O4, Compos. Met., 2017, no. 295, pp. 1–7. https://doi.org/10.3390/met7080295

  18. Pei, L.Zh., Yin, W.Y., Wang, J.F., Chen, J., Fan, Ch.G., and Zhang, Q.F., Low temperature synthesis of magnesium oxide and spinel powders by a sol–gel process, Mater. Res., 2010, vol. 13, pp. 339–343. https://doi.org/10.1590/S1516-4392010000300010

    Article  CAS  Google Scholar 

  19. Nassar, M.Y., Ahmed, I.S., and Samir, I., A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol–gel auto combustion method and their photocatalytic properties, Spectrochim. Acta, 2014, vol. 131, pp. 329–334. https://doi.org/10.1016/j.saa.2014.04.040

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Chmel’.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dunaev, A.A., Eron’ko, S.B., Ignatenkov, B.A. et al. Hot Isostatic Pressing-Induced Structural Changes in MgAl2O4 Ceramics. Inorg Mater 59, 526–529 (2023). https://doi.org/10.1134/S0020168523050035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523050035

Keywords:

Navigation