Skip to main content
Log in

Vibrational Spectra of Strontium Bismuth Molybdate: Experiment and First Principles Calculation

  • Published:
Inorganic Materials Aims and scope

Abstract—

This paper presents first principles quantum-chemical calculations of vibrational spectra of SrMoO4 clusters and clusters of Sr0.4Bi0.4MoO4, a cation-deficient scheelite-like phase. The calculation results are compared to experimental Raman spectroscopy data. The effects of bismuth incorporation and structural disorder in the clusters show up as additional scissoring vibrations of oxygens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Danevich, F.A., Georgadze, A.Sh., Kobychev, V.V., Kropivyansky, B.N., Nagorny, S.S., et al., Application of PbWO4 crystal scintillators in experiment to search for 2β decay of 116Cd, Nucl. Instrum. Methods Phys. Res., Sect. A, 2006, vol. 556, pp. 259–265. https://doi.org/10.1016/j.nima.2005.09.049

    Article  CAS  Google Scholar 

  2. Shimamura, K., Sato, H., Bensalah, A., Machida, H., Sarukura, N., and Fukuda, T., Growth of Ce-doped colquiriite- and scheelite-type single crystals for UV laser applications, Opt. Mater., 2002, vol. 19, no. 1, pp. 109–116. https://doi.org/10.1016/S0925-3467(01)00207-5

    Article  CAS  Google Scholar 

  3. Emelynova, Y.V., Krylov, A.A., Kasantseva, A.D., Buyanova, E.S., Petrova, S.A., and Nikolaenko, I.V., Bismuth niobates Bi3Nb1–xErxO7–δ: structure and transport properties, Russ. J. Inorg. Chem., 2019, vol. 64, no. 1, pp. 151–157.

    Article  Google Scholar 

  4. Bakovets, V.V., Zolotova, E.S., Antonova, O.V., Korol’kov, I.V., and Yushina, I.V., Possibility of adjusting photoluminescence spectra of Ca scheelites (CaMoO4 : Eu3+ and CaWO4 : Eu3+) to the emission spectrum of incandescent lamps, Tech. Phys., 2016, vol. 61, no. 7, pp. 1064–1073.

    Article  CAS  Google Scholar 

  5. Parulin, R.A., Timoshenko, I.V., Kuznetsova, Yu.A., Zatsepin, A.F., Buyanova, E.S., Mikhaylovskaya, Z.A., and Koubisy, M.S.I., Optical properties and energy band parameters of luminescent CaMoO4:Bi ceramics, J. Phys.: Conf. Ser., 2018, vol. 1124, p. 051005. https://doi.org/10.1088/1742-6596/1124/5/051005

    Article  CAS  Google Scholar 

  6. Vidya, S., John, A., Solomon, S., and Thomas, J.K., Optical and dielectric properties of SrMoO4 powders prepared by the combustion synthesis method, Adv. Mater. Res., 2012, vol. 1, no. 3, pp. 191–204. https://doi.org/10.12989 /amr.2012.1.3.191

  7. Bilkan, M.T. and Yurdakul, S., Experimental and theoretical studies on molecular structures and vibrational modes of novel compounds containing silver, Russ. J. Inorg. Chem., 2017, vol. 62, no. 7, pp. 910–924. https://doi.org/10.1134/S0036023617070038

    Article  CAS  Google Scholar 

  8. Kozhevnikova, N.M., Scheelite-related triple molybdates KCaLn(MoO4)3 in K2MoO4–CaMoO4–Ln2(MoO4)3 (Ln = Nd, Sm, Eu, Gd) systems: synthesis and characterization, Russ. J. Inorg. Chem., 2018, vol. 63, no. 2, pp. 147–161. https://doi.org/10.1134/S0036023618020146

    Article  Google Scholar 

  9. Lyashenko, L.P., Shcherbakova, L.G., Tartakovskii, I.I., Maksimov, A. A., Svetogorov, R.D., and Zubavichus, Ya.V., Order–disorder structural transformations in nanocrystalline highly imperfect Gd2MO5 (M = Zr and Hf) fluorite derivatives, Inorg. Mater., 2018, vol. 54, no. 3, pp. 245–252. https://doi.org/10.1134/S0020168518030093

    Article  CAS  Google Scholar 

  10. Guo, J., Randall, A.C., Zhang, G., Zhou, D., Chen, Y., and Wang, H., Synthesis, structure, and characterization of new low-firing microwave dielectric ceramics: (Ca1−3xBi2xФx)MoO4, J. Mater. Chem. C, 2014, vol. 35, no. 2, pp. 7364–7372. https://doi.org/10.1039/C4TC00698D

    Article  Google Scholar 

  11. SrMoO4 (Sr[MoO4]) crystal structure, Inorganic Solid Phases, Pauling File, Villars, P., Ed., Heidelberg: Springer. https://materals.springer.com/isp/crystallographic/docs/sd_1014644.

  12. Mikhaylovskaya, Z.A., Buyanova, E.S., Petrova, S.A., Kuznetsova, Yu.A., and Piankova, D.V., Synthesis and properties of (Ca/Sr)1–3xBi2xMoO4 solid solutions, Inorg. Mater., 2019, vol. 55, no. 10, pp. 1020–1026. https://doi.org/10.1134/S0002337X19080098

    Article  CAS  Google Scholar 

  13. Sleight, J.A.W. and Aykan, K., New nonstoichiometric molybdate, tungstate, and vanadate catalysts with the scheelite-type structure, Solid State Chem., 1975, vol. 13, no. 3, pp. 231–236.

    Article  CAS  Google Scholar 

  14. Mikhaylovskaya, Z.A., Buyanova, E.S., Sokolenko, E.V., Sliusarev, G.V., Petrova, S.A., and Zatsepin, A.F., Effect of bismuth addition on the crystal and electronic structure of strontium molybdate, Russ. J. Phys. Chem. A, 2020, vol. 94, no. 12. pp. 2502–2509.

    Article  CAS  Google Scholar 

  15. Voron’ko, Yu.K., Sobol’, A.A., Shukshin, V.E., Zagumennyi, A.I., Zavartsev, Yu.D., and Kutovoi, S.A., Raman spectroscopic study of structural disordering in YVO4, GdVO4, and CaWO4 crystals, Phys. Solid State, 2009, vol. 51, no. 9, pp. 1886–1893.

    Article  Google Scholar 

  16. Mikhaylovskaya, Z.A., Buyanova, E.S., Petrova, S.A., and Nikitina, A.A., Scheelite-related strontium molybdates: synthesis and characterization, Chim. Tech. Acta, 2018, vol. 5, no. 4, pp. 189–195. https://doi.org/10.15826/chimtech.2018.5.4.03

    Article  CAS  Google Scholar 

  17. Sokolenko, E.V. and Slyusarev, G.V., Modeling of structural defects in silicon carbide, Inorg. Mater., 2019, vol. 55, no. 1, pp. 19–31. https://doi.org/10.1134/S0002337X19010159

    Article  CAS  Google Scholar 

  18. Furlani, Th.R., Kong, J., and Gill, P.M.W., Parallelization of SCF calculations within Q-Chem, Comput. Phys. Commun., 2000, vol. 128, pp. 170–177.

    Article  CAS  Google Scholar 

  19. Wadt, W.R. and Hay, P.J., Ab initio effective core potentials for molecular calculations: potentials for main group elements Na to Bi, J. Chem. Phys., 1985, vol. 82, pp. 284–298. https://doi.org/10.1063/1.448800

    Article  CAS  Google Scholar 

  20. Botelho, G., Nogueir, I.C., Moraes, E., and Longo, E., Study of structural and optical properties of CaMoO4 nanoparticles synthesized by the microwave-assisted solvothermal method, Mater. Chem. Phys., 2016, vol. 183, pp. 110–120. https://doi.org/10.1016/j.matchemphys.2016.08.008

    Article  CAS  Google Scholar 

  21. Oliveira, F.K.F., Oliveira, M.C., Gracia, L., Tranquilin, R.L., Paskocimas, C.A., Motta, F.V., Longo, E., Andrés, J., and Bomio, M.R.D., Experimental and theoretical study to explain the morphology of CaMoO4 crystals, J. Phys. Chem. Solids, 2018, vol. 114, pp. 141–152. https://doi.org/10.1016/j.jpcs.2017.11.019

    Article  CAS  Google Scholar 

  22. Sczancoski, J.C., Cavalcante, L.S., Marana, N.L., Silva, R.O., Tranquilin, R.L., Joya, M.R., Pizani, P.S., Varela, J.A., Sambrano, J.R., Siu, LiM., Longo, E., and Andrés, J., Current electronic structure and optical properties of BaMoO4 powders, Appl. Phys., 2010, vol. 10, pp. 614–624. https://doi.org/10.1016/j.cap.2009.08.006

    Article  Google Scholar 

  23. Hanuza, J., Benzar, A., Haznar, A., Maczka, M., Pietraszko, A., and Maas, J.H., Structure and vibrational dynamics of tetragonal NaBi(WO4)2 scheelite crystal, Vibr. Spectrosc., 1996, vol. 12, pp. 25–36.

    Article  CAS  Google Scholar 

  24. Hanuza, J., Maczka, M., and Maas, J.H., Vibrational characteristics of the single-bridge MoOMo and double-bridge MoO2Mo intermolecular interactions—polarized infrared and Raman spectra of monoclinic KBi(MoO4)2 single crystal, Vibr. Spectrosc., 1995, vol. 8, pp. 417–423.

    Article  CAS  Google Scholar 

  25. Hanuza, J., Maczka, M., and Maas, J.H., Polarized IR and Raman spectra of tetragonal NaBi(WO4)2, NaBi(MoO4)2 and LiBi(Mo4)2 single crystals with scheelite structure, J. Mol. Struct., 1995, vol. 348, pp. 349–352.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Shared Research Facilities Center, North-Caucasus Federal University.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (unique project identifier no. RF–2296.61321X0043, agreement no. 075-15-2021-672). The synthesis of the materials, their characterization, and the experimental determination of their functional characteristics were supported by the Russian Science Foundation (grant no. 20-73-10048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Sokolenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolenko, E.V., Buyanova, E.S., Mikhailovskaya, Z.A. et al. Vibrational Spectra of Strontium Bismuth Molybdate: Experiment and First Principles Calculation. Inorg Mater 59, 284–290 (2023). https://doi.org/10.1134/S0020168523030135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523030135

Keywords:

Navigation