Skip to main content
Log in

Technological Features of the Preparation of Zinc Ferrite Using a Sol–Gel Process

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the formation of the structure of zinc ferrite using sol–gel synthesis in the presence of a number of organic templates: polyacrylamide, citric acid, sucrose, and urea. The synthesized materials were characterized by X-ray diffraction and electron microscopy, and we estimated the crystallite size by the Scherrer method. The results demonstrate that the formation of the spinel structure is most complete if polyacrylamide or citric acid is used as an organic template. In the case of citric acid, we obtained materials with the smallest crystallite size. The samples obtained in the presence of sucrose or urea were not single-phase. We carried out thermodynamic assessment of the processes in question. The results of this study make it possible to knowingly choose an organic precursor for the synthesis of microcrystalline spinel ferrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Smolii, V.A., Kosarev, A.S., Yatsenko, E.A., and Gol’tsman, B.N., Structure formation in cellular glass based on Novocherkassk CHPP ash–slag wastes, Glass Ceram., 2018, vol. 75, pp. 303–307. https://doi.org/10.1007/s10717-018-0075-9

    Article  CAS  Google Scholar 

  2. Yatsenko, E.A., Zubekhin, A.P., and Klimenko, E.B., Electrochemical methods for improving the strength of adhesion of one-coat glass enamels to substrate, Glass Ceram., 2004, vol. 61, pp. 90–93. https://doi.org/10.1023/B:GLAC.0000034055.17814.11

    Article  CAS  Google Scholar 

  3. Tomina, E.V., Pavlenko, A.A., and Kurkin, N.A., Synthesis of bismuth ferrite nanopowder doped with erbium ions, Condens. Matter Interphases, 2021, vol. 23, no. 1, pp. 93–100. https://doi.org/10.17308/kcmf.2021.23/3309

    Article  Google Scholar 

  4. Mittova, I.Ya., Sladkopevtsev, B.V., Mittova, V.O., Nguyen, A.T., Kopeichenko, E.I., Khoroshikh, N.V., and Varnachkina, I.A., Formation of nanoscale films of the (Y2O3–Fe2O3) on the monocrystal InP, Condens. Matter Interphases, 2019, vol. 21, no. 3, pp. 406–418. https://doi.org/10.17308/kcmf.2019.21/1156

    Article  CAS  Google Scholar 

  5. Kopeychenko, E.I., Mittova, I.Ya., Perov, N.S., Nguyen, A.T., Mittova, V.O., Alekhina, Yu.A., and Pham, V., Synthesis, composition, and magnetic properties of cadmium-doped lanthanum ferrite nanopowders, Inorg. Mater., 2021, vol. 57, no. 4, pp. 367–371. https://doi.org/10.1134/S0020168521040075

    Article  CAS  Google Scholar 

  6. Vinnik, D.A., Gudkova, S.A., Zhivulin, V.E., and Trofimov, E.A., Ferrite-based solid solutions: structure types, preparation, properties, and potential applications, Inorg. Mater., 2021, vol. 57, no. 11, pp. 1109–1118. https://doi.org/10.1134/S0020168521110133

    Article  CAS  Google Scholar 

  7. Ghasemi, A.K., Ghorbani, M., Lashkenari, M.S., and Nasiri, N., Controllable synthesis of zinc ferrite nanostructure with tunable morphology on polyaniline nanocomposite for supercapacitor application, J. Energy Storage, 2022, vol. 51, p. 104579. https://doi.org/10.1016/j.est.2022.104579

    Article  Google Scholar 

  8. Hajlaoui, M.E., Gharbi, S., Dhahri, E., and Khirouni, K., Impedance spectroscopy and giant permittivity study of ZnFe2O4 spinel ferrite as a function of frequency and temperature, J. Alloys Compd., 2022, vol. 90615, p. 164361. https://doi.org/10.1016/j.jallcom.2022.164361

    Article  CAS  Google Scholar 

  9. Fang, Y., Liang, Q., Li, Y., and Luo, H., Surface oxygen vacancies and carbon dopant co-decorated magnetic ZnFe2O4 as photo-Fenton catalyst towards efficient degradation of tetracycline hydrochloride, Chemosphere, 2022, vol. 302, p. 134832. https://doi.org/10.1016/j.chemosphere.2022.134832

    Article  CAS  PubMed  Google Scholar 

  10. Luo, J., Wu, Y., Chen, X., He, T., Zeng, Y., Wang, G., Wang, Y., Zhao, Y., and Chen, Z., Synergistic adsorption–photocatalytic activity using Z-scheme based magnetic ZnFe2O4/CuWO4 heterojunction for tetracycline removal, J. Alloys Compd., 2022, vol. 91025, p. 164954. https://doi.org/10.1016/j.jallcom.2022.164954

    Article  CAS  Google Scholar 

  11. Korneikov, R.I., Ivanenko, V.I., and Aksenova, S.V., Ion-exchange extraction of Zn2+, Co2+, and Ni2+ cations from solutions by titanium phosphate matrices, Inorg. Mater., 2022, vol. 58, no. 3, pp. 284–287. https://doi.org/10.1134/S0020168522030074

    Article  CAS  Google Scholar 

  12. Korneikov, R.I., Ivanenko, V.I., and Aksenova, S.V., Cu2+ and Ni2+ cation sorption/desorption processes on amorphous titanium phosphate sorbents, Inorg. Mater., 2022, vol. 58, no. 2, pp. 142–146. https://doi.org/10.1134/S0020168522020078

    Article  CAS  Google Scholar 

  13. Zhao, X., Baharinikoo, L., Farahani, M.D., Mahdizadeh, B., and Farizhandi, A.A.K., Experimental modelling studies on the removal of dyes and heavy metal ions using ZnFe2O4 nanoparticles, Sci. Rep., 2022, vol. 12, no. 1, p. 5987. https://doi.org/10.1038/s41598-022-10036-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Amin, A.M.M., Rayan, D.A., Ahmed, Y.M.Z., El-Shall, M.S., and Abdelbasir, S.M., Zinc ferrite nanoparticles from industrial waste for Se(IV) elimination from wastewater, J. Environ. Manage., 2022, vol. 31215, p. 114956. https://doi.org/10.1016/j.jenvman.2022.114956

    Article  CAS  Google Scholar 

  15. Wu, X., Lu, J., Huang, S., Shen, X., Cui, S., and Chen, X., Facile fabrication of novel magnetic 3-D ZnFe2O4/ ZnO aerogel based heterojunction for photoreduction of Cr(VI) under visible light: controlled synthesis, facial change distribution, and DFT study, Appl. Surf. Sci., 2022, vol. 59430, p. 153486. https://doi.org/10.1016/j.apsusc.2022.153486

    Article  CAS  Google Scholar 

  16. Buz’ko, V.Yu., Shamrai, I.I., Ryabova, M.Yu., Kireeva, G.V., and Goryachko, A.I., Properties of nickel zinc ferrite nanopowders prepared by different methods, Inorg. Mater., 2021, vol. 57, no. 1, pp. 38–43. https://doi.org/10.1134/S0020168521010027

    Article  Google Scholar 

  17. Gautam, J., Kannan, K., Meshesha, M.M., Dahal, B., Subedi, S., Ni, L., Wei, Y., and Yang, B.L., Heterostructure of polyoxometalate/zinc-iron-oxide nanoplates as an outstanding bifunctional electrocatalyst for the hydrogen and oxygen evolution reaction, J. Colloid Interface Sci., 2022, vol. 618, pp. 419–430. https://doi.org/10.1016/j.jcis.2022.03.103

    Article  CAS  PubMed  Google Scholar 

  18. Fu Y.-ming, Tang Y.-bin, Shi W.-long, Chen F.-yan, Guo F., and Hao C.-chen, Preparation of rambutan-shaped hollow ZnFe2O4 sphere photocatalyst for the degradation of tetracycline by visible-light photocatalytic persulfate activation, Mater. Chem. Phys., 2022, vol. 2861, p. 126176. https://doi.org/10.1016/j.matchemphys.2022.126176

    Article  CAS  Google Scholar 

  19. Mittova, I.Ya., Perov, N.S., Alekhina, Yu.A., Mittova, V.O., Nguyen, A.T., Kopeychenko, E.I., and Sladkopevtsev, B.V., Size and magnetic characteristics of YFeO3 nanocrystals, Inorg. Mater., 2022, vol. 58, no. 3, pp. 271–277. https://doi.org/10.1134/S0020168522030116

    Article  CAS  Google Scholar 

  20. Larionov, D.S., Bitanova, V.A., Evdokimov, P.V., Garshev, A.V., and Putlyaev, V.I., Sol–gel synthesis of Ca3(PO4)2 and Ca3–xNa2x(PO4)2 powders for the fabrication of bioceramics by 3D printing, Inorg. Mater., 2022, vol. 58, no. 3, pp. 302–310. https://doi.org/10.1134/S0020168522030098

    Article  CAS  Google Scholar 

  21. Morozova, L.V., Synthesis of nanocrystalline powders in the CеO2〈ZrO2〉–Al2O3 system by the citrate sol–gel method, Inorg. Mater., 2021, vol. 57, no. 2, pp. 154–163. https://doi.org/10.1134/S0020168521020096

    Article  CAS  Google Scholar 

  22. Sakfali, J., Ben Chaabene, S., Akkari, R., and Said Zina, M., One-pot sol–gel synthesis of doped TiO2 nanostructures for photocatalytic dye decoloration, Russ. J. Inorg. Chem., 2022, vol. 67, no. 8, pp. 1324–1337. https://doi.org/10.1134/S003602362208023X

    Article  CAS  Google Scholar 

  23. Patil, S.B., Naik, H.S.B., Nagaraju, G., Viswanath, R., Rashmi, S.K., and Kumar, M.V., Sugarcane juice mediated eco-friendly synthesis of visible light active zinc ferrite nanoparticles: application to degradation of mixed dyes and antibacterial activities, Mater. Chem. Phys., 2018, vol. 212, pp. 351–362. https://doi.org/10.1016/j.matchemphys.2018.03.038

    Article  CAS  Google Scholar 

  24. Zhang, J., Song, J.-M., Niu, H.-L., Mao, C.-J., Zhang, S.-Y., and Shen, Y.-H., ZnFe2O4 nanoparticles: synthesis, characterization, and enhanced gas sensing property for acetone, Sens. Actuators, B, 2015, vol. 221, pp. 55–62. https://doi.org/10.1016/j.snb.2015.06.040

    Article  CAS  Google Scholar 

  25. Cherif, K., Rekhila, G., Omeiri, S., Bessekhouad, Y., and Trari, M., Physical and photoelectrochemical properties of the spinel ZnFe2O4 prepared by sol gel: application to Orange II degradation under solar light, J. Photochem. Photobiol., A, 2019, vol. 368, pp. 290–295. https://doi.org/10.1016/j.jphotochem.2018.10.003

    Article  CAS  Google Scholar 

  26. Simonenko, T.L., Simonenko, N.P., Simonenko, E.P., and Kuznetsov, N.T., Features of glycol-citrate synthesis of highly dispersed oxide La0.6Sr0.4Co0.2Fe0.8O3–δ, Russ. J. Inorg. Chem., 2022, vol. 67, no. 10, pp. 1495–1502. https://doi.org/10.1134/S0036023622600939

    Article  CAS  Google Scholar 

  27. Shabel’skaya, N.P., Egorova, M.A., Arzumanova, A.V., Yakovenko, E.A., Zababurin V.M., and Vyal’tsev, A.V., Preparation of cobalt(II) ferrite-based composite materials for purification of aqueous solutions, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2021, vol. 64, no. 2, pp. 95–102. https://doi.org/10.6060/ivkkt.20216402.6215

    Article  CAS  Google Scholar 

  28. Shabelskaya, N.P., Egorova, M.A., Vasileva, E.V., and Polozhentsev, O.E., Photocatalytic properties of nanosized zinc ferrite and zinc chromite, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2021, vol. 12, no. 1, p. 015004. https://doi.org/10.1088/2043-6254/abde3b

    Article  CAS  Google Scholar 

  29. Gagarin, P.G., Gus’kov, A.V., Gus’kov, V.N., Kondrat’eva, O.N., Nikiforova, G.E., Pechkovskaya, K.I., Ryumin, M.A., Tyurin, A.V., Khoroshilov, A.V., Efimov, N.N., and Gavrichev, K.S., Thermal, thermodynamic, and magnetic properties of europium stannate Eu2Sn2O7, Russ. J. Inorg. Chem., 2022, vol. 67, no. 11, pp. 1803–1812. https://doi.org/10.1134/S0036023622601015

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.N. Yatsenko (Nanotechnologies Shared Research Facilities Center, Platov State Polytechnic University) for his assistance in collecting and interpreting the X-ray diffraction data and doing the microscopic work.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, project no. LabNOTs-21-01AB, FENW-2021-0014 (support to the youth laboratory Agrobiotechnologies for Improving Soil Fertility and Agricultural Produce Quality), as part of a program aimed at developing the South Russia Interregional Science and Education Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Shabel’skaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabel’skaya, N.P., Egorova, M.A., Radzhabov, A.M. et al. Technological Features of the Preparation of Zinc Ferrite Using a Sol–Gel Process. Inorg Mater 59, 251–256 (2023). https://doi.org/10.1134/S0020168523030111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523030111

Keywords:

Navigation