Skip to main content
Log in

Effect of Ultrasonic Treatment on the Surface Topography of Quartz Glass

  • Published:
Inorganic Materials Aims and scope

Abstract—

This paper presents our results on ultrasound-induced changes in the surface topography of quartz glass studied using the Allan variance method. The use of this method has made it possible to quantitatively assess roughness components corresponding to surface defects of particular size. Prolonged ultrasonic treatment of quartz glass plates at a power density of 10 W/cm2 has been shown to cause significant changes in surface roughness: the profile height due to small surface defects, 0.125 μm in size, increased by about 40% and the one due to large defects (12 μm) decreased by about 30%. The observed changes in surface topography seem to be related to cavitation destruction of large surface defects by local cumulative jets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Bu, X. and Alheshibri, M., The effect of ultrasound on bulk and surface nanobubbles: a review of the current status, Ultrason. Sonochem., 2021, vol. 76, p. 105629. https://doi.org/10.1016/j.ultsonch.2021.105629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kruszelnicki, M., Hassanzadeh, A., Legawiec, K.J., Polowczyk, I., and Kowalczuk, P.B., Effect of ultrasound pre-treatment on carbonaceous copper-bearing shale flotation, Ultrason. Sonochem., 2022, vol. 84, p. 105962. https://doi.org/10.1016/j.ultsonch.2022.105962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lyubimova, T., Rybkin, K., Fattalov, O., Kuchinskiy, M., and Filippov, L., Experimental study of temporal dynamics of cavitation bubbles selectively attached to the solid surfaces of different hydrophobicity under the action of ultrasound, Ultrasonics, 2021, vol. 117, p. 106516. https://doi.org/10.1016/j.ultras.2021.106516

    Article  CAS  PubMed  Google Scholar 

  4. Novikova, L., Ayrault, P., Fontaine, C., Chatel, G., Jerome, F., and Belchinskaya, L., Effect of low frequency ultrasound on the surface properties of natural aluminosilicates, Ultrason. Sonochem., 2016, vol. 31, pp. 598–609. https://doi.org/10.1016/j.ultsonch.2016.02.014

    Article  CAS  PubMed  Google Scholar 

  5. Lee, J., Yasui, K., Ashokkumar, M., and Kentish, S.E., Quantification of cavitation activity by sonoluminescence to study the sonocrystallization process under different ultrasound parameters, Cryst. Growth. Des., 2018, vol. 18, pp. 5108–5115. https://doi.org/10.1021/acs.cgd.8b00547

    Article  CAS  Google Scholar 

  6. Aganin, A.A., Guseva, T.S., Kosolapova, L.A., and Malakhov, V.G., Bubble dynamics and pulsed acoustic loading of a solid surface, Uch. Zap. Kazansk. Univ.: Ser. Fiz.-Mat. Nauki, 2021, vol. 163, pp. 31–47. https://doi.org/10.26907/2541-7746.2021.1.31-47

    Article  Google Scholar 

  7. Aganin, A.A., Kosolapova, L.A., and Malakhov, V.G., Gas bubble dynamics in liquid near a solid surface, Uch. Zap. Kazansk. Univ.: Ser. Fiz.-Mat. Nauki, 2018, vol. 160, no. 1, pp. 154–164.

    Google Scholar 

  8. GOST (State Standard) 2789-73: Parameters and characteristics of surface roughness, 2006.

  9. Aiman, O., Surface roughness formation dynamics during free abrasive treatment, Cand. Sci. (Eng.) Dissertation, St. Petersburg: St. Petersburg National Research Univ. of Information Technologies, Mechanics, and Optics, 2005.

  10. Miller, P.E., Suratwala, T.I., Wong, L.L., Feit, M.D., Menapace, J.A., Davis, P.J., and Steele, R.A., The distribution of subsurface damage in fused silica, Laser-Induced Damage Opt. Mater., 2005, vol. 5991, p. 599101. https://doi.org/10.1117/12.638821

    Article  CAS  Google Scholar 

  11. Patrikar, R.M., Modeling and simulation of surface roughness, Appl. Surf. Sci., 2004, vol. 228, nos. 1–4, pp. 213–220. https://doi.org/10.1016/j.apsusc.2004.01.010

    Article  CAS  Google Scholar 

  12. Pfeifer, P., Fractal dimension as working tool for surface-roughness problems, Appl. Surf. Sci., 1984, vol. 18, nos. 1–2, pp. 146–164.

    Article  CAS  Google Scholar 

  13. Jahn, R. and Truckenbrodt, H., A simple fractal analysis method of the surface roughness, J. Mater. Process. Technol., 2004, vol. 145, no. 1, pp. 40–45. https://doi.org/10.1016/S0924-0136(03)00860-4

    Article  Google Scholar 

  14. Panasyuk, G.P., Kozerozhets, I.V., Voroshilov, I.L., Ivakin, Yu.D., Privalov, V.I., and Danchevskaya, M.N., Water forms on the surface and in the bulk of silicon dioxide, Russ. J. Inorg. Chem., 2021, vol. 66, no. 5, pp. 724–730. https://doi.org/10.1134/S0036023621050120

    Article  CAS  Google Scholar 

  15. Banes, J.A., Characterization of frequency stability, IEEE Trans. Instrum. Meas., 1971, IM-20. no. 2, pp. 105–120.

    Article  Google Scholar 

  16. Zhou, D., Xu, P., and Gu, Q., Stochastic nested variance reduction for nonconvex optimization, J. Mach. Learn. Res., 2020, vol. 21, no. 1, pp. 4130–4192.

    Google Scholar 

  17. Ma, Y., Hu, Y., Qiao, S., He, Y., and Tittel, F.K., Trace gas sensing based on multi-quartz-enhanced photothermal spectroscopy, Photoacoustics, 2020, vol. 20, p. 100206. https://doi.org/10.1016/j.pacs.2020.100206

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang, P., Luan, C.-Y., Qiao, M., Um, M., and Zhang, J., Single ion qubit with estimated coherence time exceeding one hour, Nat. Commun. 2021, vol. 12, p. 233. https://doi.org/10.1038/s41467-020-20330-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. ALAMATH, Allan Variance Software. http://www.alavar.org/.

  20. Flynn, H.G., Physics of acoustic cavitation in liquids, Physical Acoustics: Principles and Methods, Mason, W.P., Ed., New York: Academic, 1964, vol. 1, part B, pp. 57–172.

  21. Numachi, F., An experimental study of accelerated cavitation induced by ultrasonics, Trans. ASME, Ser. D: J. Basic. Eng., 1965, vol. 87, no. 4, pp. 967–976.

    CAS  Google Scholar 

  22. Kornfeld, M. and Suvorov, L., On the destructive action of cavitation, J. Appl. Phys., 1944, vol. 15, no. 3, pp. 495–497.

    Article  CAS  Google Scholar 

  23. Peng, C., Tian, S., Li, G., and Wei, M., Enhancement of cavitation intensity and erosion ability of submerged cavitation jet by adding micro-particles, Ocean Eng., 2020, vol. 209, p. 107516. https://doi.org/10.1016/j.oceaneng.2020.107516

    Article  Google Scholar 

  24. Tan, K.L. and Yeo, S.H., Bubble dynamics and cavitation intensity in milli-scale channels under an ultrasonic horn, Ultrason. Sonochem., 2019, vol. 58, p. 104666. https://doi.org/10.1016/j.ultsonch.2019.104666

    Article  CAS  PubMed  Google Scholar 

  25. Roylance, D., Introduction to Fracture Mechanics. www.pharmacoengineering.com/wp-content/upload/2018/03/MIT3_11F99_frac.pdf.

  26. Ma, G., Xia, W., Xie, G., and Peng, Y., Ultrasound-assisted detachment behavior of glass beads and fragments from a fixed bubble, Powder Technol., 2019, vol. 355, pp. 611–616. https://doi.org/10.1016/j.powtec.2019.07.092

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Lunin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lunin, B.S., Nikolaev, A.L. Effect of Ultrasonic Treatment on the Surface Topography of Quartz Glass. Inorg Mater 59, 306–310 (2023). https://doi.org/10.1134/S0020168523030093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523030093

Keywords:

Navigation