Skip to main content
Log in

Electric Discharge Synthesis of Colloidal Silver Nanoparticle Solutions Using Various Modifiers for Immobilization on the Surface of Track-Etched Membranes

  • Published:
Inorganic Materials Aims and scope

Abstract

Colloidal solutions of silver nanoparticles have been prepared by the electric discharge method using three distinct modifiers: carbonate and citrate ions and polyethylenimine. According to optical absorption spectroscopy data and their zeta potential, the solutions were highly stable. The geometric parameters of the nanoparticles have been determined by transmission electron microscopy. The nanoparticles have been immobilized on the surface of polyethylene terephthalate track-etched membranes. The resultant surface nanostructures have been examined by scanning electron microscopy and Raman spectroscopy. The materials thus obtained have been shown to exhibit surface-enhanced Raman scattering using 4-aminothiophenol as test molecule. Relative Raman gain coefficients have been calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Treshchalov, A. et al., Stabilizer-free silver nanoparticles as efficient catalysts for electrochemical reduction of oxygen, J. Colloid Interface Sci., 2017, vol. 491, pp. 358–366. https://doi.org/10.1016/j.jcis.2016.12.053

    Article  CAS  PubMed  Google Scholar 

  2. Shin, K.S., Kim, J.H., Kim, I.H., and Kim, K., Poly(ethylenimine)-stabilized hollow gold–silver bimetallic nanoparticles: fabrication and catalytic application, Bull. Korean Chem. Soc., 2012, vol. 33, no. 3, pp. 906–910. https://doi.org/10.5012/bkcs.2012.33.3.906

    Article  CAS  Google Scholar 

  3. Fang, Y., Zhang, B., Hong, L., Yao, D., Xie, Z., and Jiang, Y., Improvement of photocatalytic activity of silver nanoparticles by radio frequency oxygen plasma irradiation, Nanotechnology, 2015, vol. 26, no. 29, p. 295204. https://doi.org/10.1088/0957-4484/26/29/295204

    Article  CAS  PubMed  Google Scholar 

  4. Vanaja, M. et al., Degradation of methylene blue using biologically synthesized silver nanoparticles, Bioinorg. Chem. Appl., 2014, vol. 2014, p. 742346. https://doi.org/10.1155/2014/742346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kreibig, U. and Genzel, L., Optical absorption of small metallic particles, Surf. Sci., 1985, vol. 156, pp. 678–700. https://doi.org/10.1016/0039-6028(85)90239-0

    Article  CAS  Google Scholar 

  6. Pryshchepa, O., Pomastowski, P., and Buszewski, B., Silver nanoparticles: synthesis, investigation techniques, and properties, Adv. Colloid Interface Sci., 2020, vol. 284, p. 102246. https://doi.org/10.1016/J.CIS.2020.102246

    Article  CAS  PubMed  Google Scholar 

  7. Evanoff, D.D. and Chumanov, G., Synthesis and optical properties of silver nanoparticles and arrays, Chem. Phys. Chem., 2005, vol. 6, no. 7, pp. 1221–1231. https://doi.org/10.1002/cphc.200500113

    Article  CAS  PubMed  Google Scholar 

  8. Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., and Kumar, R., Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites – a review, Prog. Polym. Sci., 2013, vol. 38, no. 8, pp. 1232–1261. https://doi.org/10.1016/j.progpolymsci.2013.02.003

    Article  CAS  Google Scholar 

  9. Niemeyer, C.M., Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science, Angew. Chem., Int. Ed., 2001, vol. 40, no. 22, pp. 4128–4158. https://doi.org/10.1002/1521-3773(20011119)40:22<4128::aid-anie4128>3.0.co;2-s

    Article  CAS  Google Scholar 

  10. Olenin, A.Yu. and Lisichkin, G.V., Preparation and use of chemically modified noble metal nanoparticles, Russ. J. Appl. Chem., 2018, vol. 91, no. 9, pp. 1393–1411. https://doi.org/10.1134/s0044461818090013

    Article  CAS  Google Scholar 

  11. Terenteva, E.A., Apyari, V.V., Kochuk, E.V., Dmitrienko, S.G., and Zolotov, Yu.A., Use of silver nanoparticles in spectrophotometry, J. Anal. Chem., 2017, vol. 72, no. 11, p. 1138–1154. https://doi.org/10.7868/S0044450217110020

    Article  Google Scholar 

  12. Badawy, A.M., Luxton, T.P., Silva, R.G., Scheckel, K.G., Suidan, M.T., and Tolaymat, T.M., Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions, Environ. Sci. Technol., 2010, vol. 44, no. 4, pp. 1260–1266. https://doi.org/10.1021/es902240k

    Article  CAS  PubMed  Google Scholar 

  13. Piccapietra, F., Sigg, L., and Behra, R., Colloidal stability of carbonate-coated silver nanoparticles in synthetic and natural freshwater, Environ. Sci. Technol., 2012, vol. 46, no. 2, pp. 818–825. https://doi.org/10.1021/es202843h

    Article  CAS  PubMed  Google Scholar 

  14. Abkhalimov, E.V., Ershov, V.A., and Ershov, B.G., An aqueous colloidal silver solution stabilized with carbonate ions, Colloid J., 2017, vol. 79, no. 6, pp. 735–739. https://doi.org/10.1134/S1061933X17060023

    Article  CAS  Google Scholar 

  15. Dement’eva, O.V., Mal’kovskii, A.V., Filippenko, M.A., and Rudoy, V.M., Comparative study of the properties of silver hydrosols prepared by “citrate” and “citrate–sulfate” procedures, Colloid J., 2008, vol. 70, no. 5, pp. 561–573.

    Article  Google Scholar 

  16. Krutyakov, Yu.A., Kudrinskiy, A.A., Olenin, A.Yu., and Lisichkin, G.V., Synthesis and properties of silver nanoparticles: advances and prospects, Russ. Chem. Rev., 2008, vol. 77, no. 3, pp. 233–257.

    Article  CAS  Google Scholar 

  17. Tien, D.C., Tseng, K.H., Liao, C.Y., and Tsung, T.T., Colloidal silver fabrication using the spark discharge system and its antimicrobial effect on Staphylococcus aureus, Med. Eng. Phys., 2008, vol. 30, no. 8, pp. 948–952. https://doi.org/10.1016/j.medengphy.2007.10.007

    Article  PubMed  Google Scholar 

  18. Ostroukhov, N.N., Tyanginskii, A.Yu., Sleptsov, V.V., and Tserulev, M.V., Hydrosols of metal nanoparticles: electric discharge preparation process, characterization, and biological applications, Fiz, Khim. Obrab. Mater., 2013, no. 1, pp. 77–82.

  19. Kristavchuk, O.V., Track-etched membranes modified with silver nanoparticles, Cand. Sci. (Chem.) Dissertation, Moscow, 2012.

  20. Bhattacharjee, S., DLS and zeta potential—what they are and what they are not?, J. Controlled Release, 2016, vol. 235, pp. 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017

    Article  CAS  Google Scholar 

  21. Chen, L.C., Tien, D.C., Thai, N., and Ashraf, S., Study of Ag and Au nanoparticles synthesized by arc discharge in deionized water, J. Nanomater., 2010, vol. 2010, p. 634757. https://doi.org/10.1155/2010/634757

    Article  CAS  Google Scholar 

  22. Tseng, K.H., Liao, C.Y., and Tien, D.C., Silver carbonate and stability in colloidal silver: a by-product of the electric spark discharge method, J. Alloys Compd., 2010, vol. 493, nos. 1–2, pp. 438–440. https://doi.org/10.1016/j.jallcom.2009.12.121

    Article  CAS  Google Scholar 

  23. Laserna, J.J., Campiglia, A.D., and Winefordner, J.D., Surface-enhanced Raman spectrometry on a silver-coated filter paper substrate, Anal. Chim. Acta, 1988, vol. 208, pp. 21–30.

    Article  CAS  Google Scholar 

  24. Muniz-Miranda, M., Neto, N., and Sbrana, G., Surface studies by SERS and SEM techniques on filters coated with colloidal silver, J. Mol. Struct., 1997, vols. 410–411, pp. 205–208. https://doi.org/10.1016/S0022-2860(97)00013-6

    Article  Google Scholar 

  25. Lin, C.C., Lin, C.Y., Kao, C.J., and Hung, C.H., High efficiency SERS detection of clinical microorganism by AgNPs-decorated filter membrane and pattern recognition techniques, Sens. Actuators, B, 2017, vol. 241, pp. 513–521. https://doi.org/10.1016/j.snb.2016.09.183

    Article  CAS  Google Scholar 

  26. Taurozzi, J.S. and Tarabara, V.V., Silver nanoparticle arrays on track etch membrane support as flow-through optical sensors for water quality control, Environ. Eng. Sci., 2007, vol. 24, no. 1, pp. 122–134. https://doi.org/10.1089/ees.2007.24.122

    Article  CAS  Google Scholar 

  27. Wigginton, K.R. and Vikesland, P.J., Gold-coated polycarbonate membrane filter for pathogen concentration and SERS-based detection, Analyst, 2010, vol. 135, pp. 1320–1326. https://doi.org/10.1039/b919270k

    Article  CAS  Google Scholar 

  28. Kristavchuk, O.V., Nikiforov, I.V., Kukushkin, V.I., Nechaev, A.N., and Apel, P.Yu., Immobilization of silver nanoparticles obtained by electric discharge method on a track membrane surface, Colloid J., 2017, vol. 79, no. 5, pp. 637–646. https://doi.org/10.1134/S1061933X17050088

    Article  CAS  Google Scholar 

  29. Flerov, G.N., Apel’, P.Y., Didyk, A.Y., Kuznetsov, V.I., Oganesyan, R.Ts. Use of heavy-ion accelerators to produce nuclear membranes. At. Energy, 1989, vol. 67, pp. 763–770. https://doi.org/10.1007/BF01123341.

  30. Meyer, M., Le Ru, E.C., and Etchegoin, P.G., Self-limiting aggregation leads to long-lived metastable clusters in colloidal solutions, J. Phys. Chem. B, 2006, vol. 110, pp. 6040–6047. https://doi.org/10.1021/jp055866b

    Article  CAS  PubMed  Google Scholar 

  31. Shchukin, E.D., Pertsov, A.V., and Amelina, E.A., Kolloidnaya khimiya (Colloid Chemistry), Moscow: Mosk. Gos. Univ., 1982.

  32. Bukar, N., Zhao, S.S., Charbonneau, D.M., Charbonneau, D.M., Pelletier, J.N., and Masson, J.-F., Influence of the Debye length on the interaction of a small molecule-modified Au nanoparticle with a surface-bound bioreceptor, Chem. Commun., 2014, vol. 50, no. 38, pp. 4947–4950.

    Article  CAS  Google Scholar 

  33. Spravochnik po elektrokhimii (Handbook of Electrochemistry), Sukhotin, A.M., Ed., Leningrad: Khimiya, 1981.

    Google Scholar 

  34. Borhani, T.N.G., Azarpour, A., Akbari, V., Alwi, S.R.W., and Manan, Z.A., CO2 capture with potassium carbonate solutions: a state-of-the-art review, Int. J. Greenhouse Gas Control, 2015, vol. 41, pp. 142–162. https://doi.org/10.1016/j.ijggc.2015.06.026

    Article  CAS  Google Scholar 

  35. Chiganova, G.A., Preparation of disperse systems with fractal silver nanoparticle aggregates, Zh. Sib. Fed. Univ. Tekh. Tekhnol., 2008, vol. 2, no. 1, pp. 155–161.

    Google Scholar 

  36. Lee, H., Segets, D., Süß, S., Peukert, W., Chen, S.C., and Pui, D.Y.H., Effects of filter structure, flow velocity, particle concentration and fouling on the retention efficiency of ultrafiltration for sub-20 nm gold nanoparticles, Sep. Purif. Technol., 2020, vol. 241, p. 116689. https://doi.org/10.1016/J.SEPPUR.2020.116689

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Fadeikina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadeikina, I.N., Andreev, E.V., Kristavchuk, O.V. et al. Electric Discharge Synthesis of Colloidal Silver Nanoparticle Solutions Using Various Modifiers for Immobilization on the Surface of Track-Etched Membranes. Inorg Mater 59, 337–347 (2023). https://doi.org/10.1134/S0020168523030056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523030056

Keywords:

Navigation