Skip to main content
Log in

Graphite Oxide-Based Magnetic Aerogels as Sorbents of Doxorubicin

  • Published:
Inorganic Materials Aims and scope

Abstract—

This paper reports novel techniques for the preparation of aerogels based on graphite oxide (GO) and nanocomposites of GO and superparamagnetic iron oxide nanoparticles (GO/Fe3O4) and discusses specific features of the synthesized materials as sorbents of doxorubicin from aqueous solutions. Sorption efficiency of the aerogel based on GO and superparamagnetic iron oxide nanoparticles (GO/Fe3O4) and the GO aerogel has been determined to be about 50 and 85%, respectively. At the same time, one advantage of the magnetic aerogel is that the sorbent can be removed from solution by an external magnetic field. In the case of the formal description of the sorption process by the pseudo-first-order rate equation \(W(\tau ) = W(\infty )\left( {1 - {{{\text{e}}}^{{ - k\tau }}}} \right),\) where W is sorption efficiency, the rate constant is k = 0.042 ± 0.004 min–1 for graphite oxide and 0.0832 ± 0.018 min–1 for the GO/Fe3O4 nanocomposite. The GO/Fe3O4 composite saturates about a factor of 2 more rapidly than pure GO. Sorption by the magnetic aerogel is an exothermic process. The highest efficiency of sorption from a solution with a concentration of 40 mg/L was 95% at 25°C and 60% at 40°C. The present results demonstrate that magnetic graphite aerogels are potentially attractive for use as sorbents and matrices for prolonged-release antitumor drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Petukhov, D.I., Kapitanova, O.O., Eremina, E.A., and Goodilin, E.A., Preparation, chemical features, structure and applications of membrane materials based on graphene oxide, Mendeleev Commun., 2021, vol. 31, no. 2, pp. 137–148. https://doi.org/10.1016/j.mencom.2021.03.001

    Article  CAS  Google Scholar 

  2. Brodie, B.C., On the atomic weight of graphite, Philos. Trans. R. Soc. London, 1859, vol. 149, pp. 249–259. https://doi.org/10.1098/rstl.1859.0013

    Article  Google Scholar 

  3. Hongcai Gao and Hongwei Duan, 2D and 3D graphene materials: preparation and bioelectrochemical applications, Biosens. Bioelectron., 2015, vol. 65, pp. 404–419. https://doi.org/10.1016/j.bios.2014.10.067

    Article  CAS  PubMed  Google Scholar 

  4. Hummers, W.S. and Offeman, R.E., Preparation of graphitic oxide, J. Am. Chem. Soc., 1958, vol. 80, no. 6, p. 1339. https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  5. Marcano, D.C., Kosynkin, D.V., Berlin, J.M., Sinitskii, A., et al., Improved synthesis of graphene oxide, ACS Nano, 2010, vol. 4, no. 8, pp. 4806–4814. https://doi.org/10.1021/nn1006368

    Article  CAS  PubMed  Google Scholar 

  6. Xu Jiang, Wenyue Pan, Zhili Xiong, Yixuan Zhang, and Longshan Zhao, Facile synthesis of layer-by-layer decorated graphene oxide based magnetic nanocomposites for β-agonists/dyes adsorption removal and bacterial inactivation in wastewater, J. Alloys Compd., 2021, no. 870, pp. 1–12.

  7. Pavlova, J.A., Ivanov, A.V., Maksimova, N.V., Pokholok, K.V., Vasiliev, A.V., Malakho, A.P., and Avdeev, V.V., Two-stage preparation of magnetic sorbent based on exfoliated graphite with ferrite phases for sorption of oil and liquid hydrocarbons from the water surface, J. Phys. Chem. Solids, 2018, no. 116, pp. 299–305. https://doi.org/10.1016/j.jpcs.2018.01.044

  8. Xiaowen Wang, Yuyuan Zhang, Rui Shan, and Huawen Hu, Polydopamine interface encapsulating graphene and immobilizing ultra-small, active Fe3O4 nanoparticles for organic dye adsorption, Ceram. Int., 2021, no. 47, pp. 3219–3231. https://doi.org/10.1016/j.ceramint.2020.09.160

  9. Limei Cui., Xiaoyao Guo, Qin Wei, Yaoguang Wang, Liang Gao, Liangguo Yan, Tao Yan, and Bin Du, Removal of mercury and methylene blue from aqueous solution by xanthate functionalized magnetic graphene oxide: sorption kinetic and uptake mechanism, J. Colloid Interface Sci., 2015, no. 439, pp. 112–120.https://doi.org/10.1016/j.jcis.2014.10.019

  10. Yu Wanga, Yuhong Jinb, Chenchen Zhaob, Erzhuang Pana, and Mengqiu Jia, Fe3O4 nanoparticle/graphene aerogel composite with enhanced lithium storage performance, Appl. Surf. Sci., 2018, vol. 458, pp. 1035–1042. https://doi.org/10.1016/j.apsusc.2018.07.127

    Article  CAS  Google Scholar 

  11. Fierascua, I., Fistosa, T., Baroia, A.M., and Brazdis, R.I., Application of magnetic composites for the removal of organic pollutants from wastewaters, Mater. Today: Proc., 2019, vol. 19, no. 3, pp. 910–916. https://doi.org/10.1016/j.matpr.2019.08.001

    Article  CAS  Google Scholar 

  12. Eremina, E.A., Kaplin, A.V., Eliseev, A.A., Sidorov, A.V., Radzhabzoda, Sh.S., Grigor’eva, A.V., and Gudilin, E.A., Multifunctional composites based on graphite oxide, doxorubicin, and magnetic nanoparticles for drug delivery, Ross. Nanotekhnol., 2018, vol. 13, nos. 3–4, pp. 49–56.

    Google Scholar 

  13. Zonghua Wang, Chengfeng Zhou, Jianfei Xia, Brian Via, Yanzhi Xia., Feifei Zhang, Yanhui Li, and Linhua, Xia, Fabrication and characterization of a triple functionalization of graphene oxide with Fe3O4, folic acid and doxorubicin as dual-targeted drug nanocarrier, Colloids Surf., B, 2013, vol. 106, pp. 60–65. https://doi.org/10.1016/j.colsurfb.2013.01.032

    Article  CAS  Google Scholar 

  14. Meng-Meng Song, Huai-Liang Xu, Jun-Xing Liang, Hui-Hui Xiang, Rui Liu, and Yu-Xian Shen, Lactoferrin modified graphene oxide iron oxide nanocomposite for glioma-targeted drug delivery, Mater. Sci. Eng., C, 2017, vol. 77, pp. 904–911. https://doi.org/10.1016/j.msec.2017.03.309

    Article  CAS  Google Scholar 

  15. Yue Yang, Yanrong Zhao, Shihan Sun, Xueyu Zhang, et al., Self-assembled three-dimensional graphene/ Fe3O4 hydrogel for efficient pollutant adsorption and electromagnetic wave absorption, Mater. Res. Bull., 2016, vol. 73, pp. 401–408. https://doi.org/10.1016/j.materresbull.2015.09.032

    Article  CAS  Google Scholar 

  16. Manman Ren, Mingzhi Yang, Weiliang Liu, Mei Li, et al., Ultra-small Fe3O4 nanocrystals decorated on 2D graphene nanosheets with excellent cycling stability as anode materials for lithium ion batteries, Electrochim. Acta, 2016, vol. 194, pp. 219–226. https://doi.org/10.1039/c3nr01826a

    Article  CAS  Google Scholar 

  17. Jie-Ping Fana, Bing Zhenga, Yu Qina, Dan Yanga, et al., A superparamagnetic Fe3O4–graphene oxide nanocomposite for enrichment of nuciferine in the extract of Nelumbinis folium (Lotus leaf), Appl. Surf. Sci., 2016, vol. 364, pp. 332–339. https://doi.org/10.1016/j.apsusc.2015.12.160

    Article  CAS  Google Scholar 

  18. Yong Li, Ruofang Zhang, Xike Tian, Chao Yang, et al., Facile Synthesis of Fe3O4 Nanoparticles Decorated on 3D Graphene Aerogels as Broad-Spectrum Sorbents for Water Treatment, Appl. Surf. Sci., 2016, vol. 369, pp. 11–18. https://doi.org/10.1016/j.apsusc.2016.02.019

    Article  CAS  Google Scholar 

  19. Yu Wang, Yuhong Jin, Chenchen Zhao, Erzhuang Pan, et al., Fe3O4 nanoparticle/graphene aerogel composite with enhanced lithium storage performance, Appl. Surf. Sci., 2018, vol. 458, pp. 1035–1037. https://doi.org/10.1016/j.apsusc.2018.07.127

    Article  CAS  Google Scholar 

  20. Nur Hidayati Othman, Nur Hashimah Alias, Munawar Zaman Shahruddin, Noor Fitrah Abu Bakar, et al., Adsorption kinetics of methylene blue dyes onto magnetic graphene oxide, J. Environ. Chem. Eng., 2018, vol. 6, pp. 2803–2811. https://doi.org/10.1016/j.jece.2018.04.024

    Article  CAS  Google Scholar 

  21. Azizian, S., Kinetic models of sorption. A theoretical analysis, J. Colloid Interface Sci., 2004, vol. 276, no. 1, pp. 47–52. https://doi.org/10.1016/j.jcis.2004.03.048

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. RNF 22-29-00544.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Eremina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eremina, E.A., Kaplin, A.V., Rubleva, A.A. et al. Graphite Oxide-Based Magnetic Aerogels as Sorbents of Doxorubicin. Inorg Mater 59, 264–271 (2023). https://doi.org/10.1134/S0020168523030044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523030044

Keywords:

Navigation