Skip to main content
Log in

Interaction of a Metallic Catalyst with the Barrier Layer Material during High-Temperature Formation of Nickel Nanoparticles

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied the effect of annealing conditions on the formation of nickel particles on a titanium nitride barrier layer produced by atomic layer deposition. The results demonstrate that the nanoparticle size depends on annealing temperature and time. At temperatures above 700°C, annealing for more than 5 min results in coalescence, which leads to particle growth and a decrease in the surface density of the particles. During annealing, nickel diffuses into the titanium nitride and the amount of nickel on the surface decreases. The experimental data agree with results of nanoparticle formation modeling in the hydrodynamic model. We have determined the catalyst–buffer interaction potential and melt viscosity, which demonstrate that, in the case of melting of a thin nickel layer, on the order of a few nanometers in thickness, the metal is similar to a supercooled liquid. Modeling results suggest that, during annealing of a thin metal film/barrier layer couple, the average nanoparticle size is smaller at lower potentials of interaction between the constituent materials of the couple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Bulyarskiy, S.V., Uglerodnye nanotrubki: tekhnologiya, upravlenie svoistvami, primenenie (Carbon Nanotubes: Technology, Control over Properties, and Application), Ulyanovsk: Strezhen’, 2011.

  2. Dasgupta, K., Joshi, J.B., and Banerjee, S., Fluidized bed synthesis of carbon nanotubes – a review, Chem. Eng. J., 2011, vol. 171, no. 3, pp. 841–869. https://doi.org/10.1016/j.cej.2011.05.038

    Article  CAS  Google Scholar 

  3. Kumar, M. and Ando, Y., Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production, J. Nanosci. Nanotechnol., 2010, vol. 10, no. 6, pp. 3739–3758. https://doi.org/10.1166/jnn.2010.2939

    Article  CAS  PubMed  Google Scholar 

  4. Ago, H., Komatsu, T., Ohshima, S., Kuriki, Y., and Yumura, M., Dispersion of metal nanoparticles for aligned carbon nanotube arrays, Appl. Phys. Lett., 2000, vol. 77, no. 1, pp. 79–81. https://doi.org/10.1063/1.126883

    Article  CAS  Google Scholar 

  5. Melechko, A.V., Merkulov, V.I., McKnight, T.E., Guillorn, M.A., Klein, K.L., Lowndes, D.H., and Simpson, M.L., Vertically aligned carbon nanofibers and related structures: controlled synthesis and directed assembly, J. Appl. Phys., 2005, vol. 97, no. 4, p. 41301. https://doi.org/10.1063/1.1857591

    Article  CAS  Google Scholar 

  6. Lee, C.J., Park, J., and Yu, J.A., Catalyst effect on carbon nanotubes synthesized by thermal chemical vapor deposition, Chem. Phys. Lett., 2002, vol. 360, nos. 3–4, pp. 250–255. https://doi.org/10.1016/S0009-2614(02)00831-X

    Article  CAS  Google Scholar 

  7. Andrews, R., Jacques, D., Qian, D., and Rantell, T., Multiwall carbon nanotubes: synthesis and application, Acc. Chem. Res., 2002, vol. 35, no. 12, pp. 1008–1017. https://doi.org/10.1021/ar010151m

    Article  CAS  PubMed  Google Scholar 

  8. Bulyarskiy, S.V., Zenova, E.V., Lakalin, A.V., Molodenskii, M.S., Pavlov, A.A., Tagachenkov, A.M., and Terent’ev, A.V., Influence of a buffer layer on the formation of a thin-film nickel catalyst for carbon nanotube synthesis, Tech. Phys., 2018, vol. 63, no. 12, pp. 1834–1839. https://doi.org/10.1134/S1063784218120253

    Article  CAS  Google Scholar 

  9. L’vov, P.E., Bulyarskiy, S.V., Gusarov, G.G., Molodenskiy, M.S., Pavlov, A.A., Ryazanov, R.M., Dudin, A.A., and Svetukhin, V.V., Kinetics of nickel particle formation on silicon substrate with a buffer layer of niobium nitride, J. Phys.: Condens. Matter, 2020, vol. 32, no. 24, p. 245001. https://doi.org/10.1088/1361-648X/ab7870

    Article  PubMed  Google Scholar 

  10. L’vov, P.E., Svetukhin, V.V., Bulyarskii, S.V., and Pavlov, A.A., Simulation of wetting phase transitions in thin films, Phys. Solid State, 2019, vol. 61, no. 10, pp. 1872–1881. https://doi.org/10.1134/S1063783419100238

    Article  Google Scholar 

  11. Peng, Y., Wang, Z., Alsayed, A.M., Yodh, A.G., and Han, Y., Publisher’s note: melting of colloidal crystal films, Phys. Rev. Lett., 2010, vol. 104, no. 21, p. 205703. https://doi.org/10.1103/PhysRevLett.104.219901

    Article  CAS  PubMed  Google Scholar 

  12. Thiele, U., Recent advances in and future challenges for mesoscopic hydrodynamic modelling of complex wetting, Colloids Surf., A, 2018, vol. 553, pp. 487–495. https://doi.org/10.1016/j.colsurfa.2018.05.049

    Article  CAS  Google Scholar 

  13. Shchekin, A.K., Lebedeva, T.S., and Suh, D., The overlapping surface layers and the disjoining pressure in a small droplet, Colloids Surf., A, 2019, vol. 574, pp. 78–85. https://doi.org/10.1016/j.colsurfa.2019.04.071

    Article  CAS  Google Scholar 

  14. Kukushkin, S.A. and Osipov, A.V., Kinetics of first-order phase transitions in the asymptotic stage, J. Exp. Theor. Phys., 1998, vol. 86, no. 6, pp. 1201–1208. https://doi.org/10.1134/1.558591

    Article  Google Scholar 

  15. Slezov, V.V. and Schmelzer, J., Kinetics of formation and growth of a new phase with a definite stoichiometric composition, J. Phys. Chem. Solids, 1994, vol. 55, no. 3, pp. 243–251. https://doi.org/10.1016/0022-3697(94)90139-2

    Article  CAS  Google Scholar 

  16. Nowak, W.B., Keukelaar, R., Wang, W., and Nyaiesh, A.R., Diffusion of nickel through titanium nitride films, J. Vac. Sci. Technol., A, 1985, vol. 3, no. 6, pp. 2242–2245. https://doi.org/10.1116/1.572900

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to K.I. Litvinova for her assistance in preparing the samples, E.P. Kirilenko for performing the Auger spectroscopic work, and L.S. Volkova and M.V. Polyakov for their assistance in the scanning and transmission electron microscopic work.

The investigations were performed in the Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences (INME RAS) using Large Scale Research Facility Complex for Heterogeneous Integration Technologies and Silicon + Carbon Nanotechnologies.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, state research target no. 0004-2022-0004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Bulyarskiy.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulyarskiy, S.V., Dudin, A.A., L’vov, P.E. et al. Interaction of a Metallic Catalyst with the Barrier Layer Material during High-Temperature Formation of Nickel Nanoparticles. Inorg Mater 59, 235–241 (2023). https://doi.org/10.1134/S0020168523030020

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523030020

Keywords:

Navigation