Skip to main content
Log in

Low-Temperature Phase Formation in the BaF2–LaF3 System

  • Published:
Inorganic Materials Aims and scope

Abstract—

Barium lanthanum fluoride powders have been prepared by reacting barium nitrate and lanthanum nitrate in molten sodium nitrate at 350 and 450°C, using a sodium fluoride as a fluorinating agent. A fivefold excess of sodium fluoride has been shown to prevent pyrohydrolysis. We have identified a phase of variable composition with the fluorite structure, Ba1–xLaxF2+x (0.3 < x < 0.5), which has high ionic conductivity (2.3 × 10–4 S/cm at 500 K) and an activation enthalpy for ionic transport of 0.50 ± 0.01 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Sobolev, B.P. and Tkachenko, N.L., Phase diagrams of BaF2–(Y,Ln)F3 systems, J. Less-Common Met., 1982, vol. 85, p. 155. https://doi.org/10.1016/0022-5088(82)90067-4

    Article  CAS  Google Scholar 

  2. Wapenaar, K.E.D., Van Koesveld, J.L., and Schoonman, J., Conductivity enhancement in fluorite-structured Ba1–xLaxF2+x solid solutions, Solid State Ionics, 1981, vol. 2, p. 145. https://doi.org/10.1016/0167-2738(81)90172-7

    Article  CAS  Google Scholar 

  3. Fedorov, P.P., Turkina, T.M., Sobolev, B.P., Mariani, E., and Svantner, M., Ionic conductivity in the single crystals of non-stoichiometric fluorite phases M1–xRxF2+x (M = Ca, Sr, Ba; R = Y, La-Lu), Solid State Ionics, 1982, vol. 6, p. 331. https://doi.org/10.1016/0167-2738(82)90018-2

    Article  CAS  Google Scholar 

  4. Ivanov-Shits, A.K., Sorokin, N.I., Fedorov, P.P., and Sobolev, B.P., Specific features of ion transport in nonstoichiometric fluorite-type Ba1–xRxF2+x (R = La–Lu phases, Solid State Ionics, 1989, vol. 31, p. 269. https://doi.org/10.1016/0167-2738(89)90466-9

    Article  CAS  Google Scholar 

  5. Kolesik, M., Tnega, D., and Sobolev, B.P., A study of the disorder in heavily doped Ba1–xLaxF2+x by Raman scattering, Phys. Status Solidi B, 1990, vol. 160, pp. 375–380.

    Article  CAS  Google Scholar 

  6. Tu, J.J. and Sievers, A.J., Experimental study of Raman-active two-level systems and the boson peak in LaF3-doped fluorite mixed crystals, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 66, p. 094206. https://doi.org/10.1103/PhysRevB.66.094206

    Article  CAS  Google Scholar 

  7. Aminov, L.K., Kurkin, I.N., Kurzin, S.P., Gromov, I.A., Mamin, G.V., and Rakhmatullin, R.M., Identification of the La6F37 cubooctahedral clusters in mixed crystals (BaF2)1−x(LaF3)x by the electron paramagnetic resonance method, Phys. Solid State, 2007, vol. 49. no. 11, pp. 2086–2090. https://doi.org/10.1134/S1063783407110121

    Article  CAS  Google Scholar 

  8. Preishuber-Pflügl, F., Bottke, P., Pregartner, V., Bitschnau, B., and Wilkening, M., Correlated fluorine diffusion and ionic conduction in the nanocrystalline F solid electrolyte Ba0.6La0.4F2.419F T1(ρ) NMR relaxation vs. conductivity measurements, Phys. Chem. Chem. Phys., 2014, vol. 16, pp. 9580–9590. https://doi.org/10.1039/C4CP00422A

    Article  PubMed  Google Scholar 

  9. Rammutla, K.E., Comins, J.D., Erasmus, R.M., Netshisaulu, T.T., Ngoepe, P.E., and Chadwick, A.V., Light scattering and computer simulation studies of superionic pure and La-doped BaF2, Chem. Phys., 2016, vol. 467, pp. 6–12.

    Article  CAS  Google Scholar 

  10. Chable, J., Martin, A.G., Bourdin, A., Body, M., Legein, C., Jouanneaux, A., Crosnier-Lopez, M.-P., Galven, C., Dieudonne, B., Leblanc, M., Demourgues, A., and Maisonneuve, V., Solid electrolytes: from microcrystalline to nanostructured tysonite-type La0.95Ba0.05F2.95, J. Alloys Compd., 2017, vol. 692, p. 980. https://doi.org/10.1016/j.jallcom.2016.09.135

    Article  CAS  Google Scholar 

  11. Mori, K., Mineshige, A., Saito, T., Sugiura, M., Ishikawa, Y., Fujisaki, F., Namba, K., Kamijama, T., Otomo, T., Abe, T., and Fukunaga, T., Experimental visualization of interstitialcy diffusion pathways in fast-fluoride-ion conducting solid electrolyte Ba0.6La0.4F2.4, ACS Appl. Energy Mater., 2020, vol. 3, pp. 2873–1880. https://doi.org/10.21/acsaem.9b02494

  12. Buchinskaya, I.I., Karimov, D.N., and Sorokin, N.I., La1–yBayF3–y solid solution crystals as an effective solid electrolyte: growth and properties, Crystals, 2021, vol. 11, no. 6, p. 629. https://doi.org/10.3390/cryst11060629

    Article  CAS  Google Scholar 

  13. Sulyanova, E., Karimov, D.N., and Sobolev, B.P., Displacements in the cationic motif of nonstoichiometric fluorite phases Ba1–x R xF2+x as a result of the formation of {Ba8[R 6F68-69]} clusters: III. Defect cluster structure of the nonstoichiometric Ba0.69La0.31F2.31 phase and its dependence on heat treatment, Crystals, 2021, vol. 11, no. 4, p. 447. https://doi.org/10.3390/cryst11040447

    Article  CAS  Google Scholar 

  14. Sorokin, N.I. and Karimov, D.N., Crystallophysical model of ion transport in single-crystal Ba1–xLaxF2+x and Ca1–xYxF2+x superionic conductors, Phys. Solid State, 2021, vol. 63, no. 10, pp. 1821–1832. https://doi.org/10.1134/S106378342110036X

    Article  CAS  Google Scholar 

  15. Nikolaichik, V.I., Sobolev, B.P., Sorokin, N.I., and Avilov, A.S., Electron diffraction study and ionic conductivity of fluorite and tysonite phases in the system, Solid State Ionics, 2022, vol. 386, no. 116052.

  16. Fedorov P.P. and Sobolev, B.P., Conditions for the formation of maxima on the fusion curves of solid solutions in salt systems, Russ. J. Inorg. Chem., 1979, vol. 24, no. 4, pp. 574–575.

    Google Scholar 

  17. Fedorov, P.P., Heterovalent isomorphism and solid solutions with a variable number of ions in the unit cell, Russ. J. Inorg. Chem., 2000, vol. 45, suppl. 3, pp. S268–S291.

    Google Scholar 

  18. Sobolev, B.P., The Rare Earth Trifluorides, part I: The High Temperature Chemistry of the Rare Earth Trifluorides, Barcelona: Inst. d’Estudis Catalans, 2000.

    Google Scholar 

  19. Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Solid State Ionics), St. Petersburg: S.-Peterburg. Univ., 2010, vol. 2.

  20. Potanin, A.A., Solid-state electrochemical cell based on a lanthanum trifluoride-type ionic conductor, Ross. Khim. Zh., 2001, vol. 45, nos. 5–6, p. 58.

    CAS  Google Scholar 

  21. Sorokin, N.I. and Sobolev, B.P., Nonstoichiometric fluorides—solid electrolytes for electrochemical devices: a review, Crystallogr. Rep., 2007, vol. 52, no. 5, pp. 842–863. https://doi.org/10.1134/S1063774507050148

    Article  CAS  Google Scholar 

  22. Rongeat, C., Anji Reddy, M., Witter, R., and Fichtner, M., Nanostructured fluorite-type fluorides as electrolytes for fluoride ion batteries, J. Phys. Chem. C, 2013, vol. 117, pp. 4943–4950. https://doi.org/10.1021/jp3117825

    Article  CAS  Google Scholar 

  23. Gschwind, F., Rodrigues-Garsia, G., Sandbeck, D.J.S., Gross, A., Weil, M., Fichtner, M., and Hormann, N., Fluoride ion batteries: theoretical performance, safety, toxicity, and a combinatorial screening of new electrodes, J. Fluorine Chem., 2016, vol. 182, p. 76. https://doi.org/10.1016/j.jfluchem.2015.12.002

    Article  CAS  Google Scholar 

  24. Karkera, G., Anji Reddy, M., and Fichtner, M., Recent developments and perspectives of anionic batteries, J. Power Sources, 2021, vol. 481, p. 228877. https://doi.org/10.1016/j.jpowsour.2020.228877

    Article  CAS  Google Scholar 

  25. Sobolev, B.P., The Rare Earth Trifluorides, part 2: Introduction to Materials Science of Multicomponent Metal Fluoride Crystals, Barcelona: Inst. d’Estudis Catalans, 2001.

    Google Scholar 

  26. Kuznetsov, S.V., Fedorov, P.P., Voronov, V.V., Samarina, K.S., Ermakov, R.P., and Osiko, V.V., Synthesis of Ba4R3F17 (R stands for rare-earth elements) powders and transparent compacts on their base, Russ. J. Inorg. Chem., 2010, vol. 55, no. 4, pp. 484–493. https://doi.org/10.1134/S0036023610040029

    Article  CAS  Google Scholar 

  27. Fedorov, P.P., Alexandrov, A.A., Voronov, V.V., Mayakova, M.N., Bragina, A.G., Tsygankova, M.V., Lysakova, E.I., D’yachenko, A.N., and Ivanov, V.K., Synthesis of solid solution Ba1–xLaxF2+x from nitrate melt, Russ. J. Inorg. Chem., 2022, vol. 67, no. 6, pp. 861–867. https://doi.org/10.1134/S0036023622060079

    Article  CAS  Google Scholar 

  28. Fedorov, P.P., Mayakova, M.N., Alexandrov, A.A., Voronov, V.V., Kuznetsov, S.V., Baranchikov, A.E., and Ivanov, V.K., The melt of sodium nitrate as a medium for synthesis of fluorides, Inorganics, 2018, vol. 6, no. 2, pp. 38–55. https://doi.org/10.3390/inorganics6020038

    Article  CAS  Google Scholar 

  29. Fedorov, P.P. and Alexandrov, A.A., Synthesis of inorganic fluorides in molten salt fluxes and ionic liquid mediums, J. Fluorine Chem., 2019, vol. 227, no. 109374. https://doi.org/10.1016/j.jfluchem.2019.109374

  30. Warf, J.C., Cline, W.C., and Tevebaugh, R.D., Pyrohydrolysis in the determination of fluorides and other halides, Anal. Chem., 1954, vol. 26, pp. 342–346.

    Article  CAS  Google Scholar 

  31. Fedorov, P.P., Alexandrov, A.A., Voronov, V.V., Mayakova, M.N., Baranchikov, A.E., and Ivanov, V.K., Low-temperature phase formation in the SrF2–LaF3 system, J. Am. Ceram. Soc., 2021, vol. 104, no. 6, pp. 2836–2848. https://doi.org/10.1111/jace.17666

    Article  CAS  Google Scholar 

  32. Kruglov, A.I. and Kochergin, V.P., Decomposition onset temperature of mixtures of sodium and potassium nitrates and halides, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 1971, vol. 14, pp. 1429–1433.

    CAS  Google Scholar 

  33. Kieser, M. and Greis, O., Darstettung und Eignschaften der Fluoriruberstrukturphases Ba4SE3F17 mit SE = Ce–Nd, Sm–Lu und Y, Z. Anorg. Allg. Chem., 1980, vol. 469, pp. 164–171.

    Article  CAS  Google Scholar 

  34. Maksimov, B.A., Solans, Kh., Dudka, A.P., Genkina, E.A., Bardia-Font, M., Buchinskaya, I.I., Loshmanov, A.A., Golubev, A.M., Simonov, V.I., Font-Altaba, M., and Sobolev, B.P., Crystal structure of fluorite-based Ba4R3F17 (R = Y, Yb) phases. The ordering of cations and features of the anionic arrangement, Crystallogr. Rep., 1996, vol. 41, no. 1, pp. 51–59.

    CAS  Google Scholar 

  35. Fedorov, P.P., Third law of thermodynamics as applied to phase diagrams, Russ. J. Inorg. Chem., 2010, vol. 55, no. 11, pp. 1722–1739. https://doi.org/10.1134/S0036023610110100

    Article  CAS  Google Scholar 

  36. Browning, P., Hyland, G.J., and Ralph, J., The origin of the specific heat anomaly in solid urania, High Temp.–High Pressures, 1983, vol. 15, pp. 169–178.

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Shared Research Facilities Center, Prokhorov General Physics Institute of the Russian Academy of Sciences; the Shared Physical Characterization Facilities Center, Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; and the Crystallography and Photonics Federal Research Center of the Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation, grant no. 22-13-00167. https://rscf.ru/project/22-13-00167/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Fedorov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, A.A., Bragina, A.G., Sorokin, N.I. et al. Low-Temperature Phase Formation in the BaF2–LaF3 System. Inorg Mater 59, 295–305 (2023). https://doi.org/10.1134/S0020168523030019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523030019

Keywords:

Navigation