Skip to main content
Log in

Optimization of R2O2Se (R = La, Gd, Y) Synthesis for the Preparation of Optical Materials

  • Published:
Inorganic Materials Aims and scope

Abstract

We have perfected processes for the synthesis of lanthanum, gadolinium, and yttrium oxyselenides by heating oxides in flowing hydrogen and selenium vapor. The optimal selenidation temperature is 700°C for lanthanum, 850°C for gadolinium, and 900°C for yttrium. Subsequent annealing of the materials in flowing hydrogen at 1000°C makes it possible to remove trace levels of amorphous selenium and impurity phases containing diselenide groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Ropp, R.C., The chemistry of artificial lighting devices: lamps, phosphors and cathode ray tubes, in Studies in Inorganic Chemistry, New York: Elsevier, 1993.

    Google Scholar 

  2. Shionoya, S., Yen, W.M., and Yamamoto, H., Phosphor Handbook, Laser and Optical Science and Technology, vol. 21, Weber, M.J., Ed., Boca Raton: CRC, 2006.

    Google Scholar 

  3. Bugby, S.L., Jambi, L.K., and Lees, J.E., A comparison of CsI:Tl and GOS in a scintillator–CCD detector for nuclear medicine imaging, J. Instrum., 2016, vol. 11, p. P09009. https://doi.org/10.1088/1748-0221/11/09/p09009

    Article  Google Scholar 

  4. Hussey, D.S., LaManna, J.M., Baltic, E., and Jacobson, D.L., Neutron imaging detector with 2 μm spatial resolution based on event reconstruction of neutron capture in gadolinium oxysulfide scintillators, Nucl. Instrum. Methods Phys. Res., Sect. A, 2017, vol. 866, pp. 9–12. https://doi.org/10.1016/j.nima.2017.05.035

    Article  CAS  Google Scholar 

  5. Jiang, X.F., Xiu, Q.L., Zhou, J.R., Yang, J.Q., Tan, J.H., Yang, W.Q., Zhang, L.J., Xia, Y.G., Zhou, X.J., Zhou, J.J., Zhu, L., Teng, H.Y., Yang, G.A., Song, Y.S., Sun, Z.J., and Chen, Y.B., Study on the neutron imaging detector with high spatial resolution at China Spallation Neutron Source, Nucl. Eng. Technol., 2021, vol. 53, no. 6, pp. 1942–1946. https://doi.org/10.1016/j.net.2020.12.009

    Article  CAS  Google Scholar 

  6. Kertzscher, G. and Beddar, S., Inorganic scintillation detectors based on Eu-activated phosphors for Ir-192 brachytherapy, Phys. Med. Biol., 2017, vol. 62, no. 12, pp. 5046–5075. https://doi.org/10.1088/1361-6560/aa716e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tisseur, D., Eck, D., Estre, N., Kistler, M., Payan, E., and Tamagno, L., Detector upgrade for fast MeV X-ray imaging for severe accidents experiments, IEEE Trans. Nucl. Sci., 2020, vol. 67, no. 7, pp. 1715–1721. https://doi.org/10.1109/tns.2020.2995969

    Article  CAS  Google Scholar 

  8. Yoneyama, A., Baba, R., and Kawamoto, M., Quantitative analysis of the physical properties of CsI, GAGG, LuAG, CWO, YAG, BGO, and GOS scintillators using 10-, 20- and 34-keV monochromated synchrotron radiation, Opt. Mater. Express, 2021, vol. 11, no. 2, pp. 398–411. https://doi.org/10.1364/ome.409161

    Article  CAS  Google Scholar 

  9. Santelli, J., Lechevallier, S., Baaziz, H., Vincent, M., Martinez, C., Mauricot, R., Parini, A., Verelst, M., and Cussac, D., Multimodal gadolinium oxysulfide nanoparticles: a versatile contrast agent for mesenchymal stem cell labeling, Nanoscale, 2018, vol. 10, no. 35, pp. 16775–16786. https://doi.org/10.1039/c8nr03263g

    Article  CAS  PubMed  Google Scholar 

  10. Jiao, J.X., Liu, Y.W., Wang, H., Yin, X.M., Xing, M.M., Luo, X.X., and Tian, Y., Enhancing upconversion luminescence and thermal sensing properties of Er/Yb co-doped oxysulfide core–shell nanocrystals, J. Am. Ceram. Soc., 2021, vol. 104, no. 2, pp. 985–994. https://doi.org/10.1111/jace.17509

    Article  CAS  Google Scholar 

  11. Larquet, C., Klein, Y., Hrabovsky, D., Gauzzi, A., Sanchez, C., and Carenco, S., Tunable magnetic properties of (Gd,Ce)2O2S oxysulfide nanoparticles, Eur. J. Inorg. Chem., 2019, no. 6, pp. 762–765. https://doi.org/10.1002/ejic.201801466

  12. Huang, J., Tang, Z.Y., Guo, M., Wang, Y., Wang, Z.L., Wu, Z., and Zhang, P.B., Incorporation of gadolinium oxide and gadolinium oxysulfide microspheres: MRI/CT monitoring and promotion of osteogenic/chondrogenic differentiation for bone implants, Chemnanomat, 2020, vol. 6, no. 12, pp. 1819–1832. https://doi.org/10.1002/cnma.202000476

    Article  CAS  Google Scholar 

  13. Belaya, S.V., Bakovets, V.V., Rakhmanova, M.I., Maksimovskii, E.A., Yushina, I.V., Shayapov, V.R., and Korolkov, I.V., Films of (Gd1–xTbx)2O2S solid solutions produced by oxide sulfidation in NH4SCN vapor and their optical properties, Inorg. Mater., 2020, vol. 56, no. 8, pp. 836–846. https://doi.org/10.1134/S0020168520080038

    Article  CAS  Google Scholar 

  14. Knoll, G.F., Radiation Detection and Measurement, New York: Wiley, 2010, 4th ed.

    Google Scholar 

  15. Tarasenko, M.S., Ryadun, A.A., Orazov, Zh.K., Pomelova, T.A., Zalesskii, V.B., Malyutina-Bronskaya, V.V., Fedorov, V.E., Wang, H.-Ch., and Naumov, N.G., The concentration quenching of photoluminescence and the quantum yield in (Y1–xPrx)2O2Se solid solutions, Inorg. Mater., 2021, vol. 57, no. 8, pp. 830–834. https://doi.org/10.1134/S002016852108015x

    Article  CAS  Google Scholar 

  16. Tarasenko, M.S., Kiryakov, A.S., Ryadun, A., Kuratieva, N.V., Plyusnin, P.E., and Naumov, N.G., Y2O2Se as a potential matrix for optical materials: a novel preparation method and optical properties, Mater. Today Commun., 2019, vol. 21, p. 100665. https://doi.org/10.1016/j.mtcomm.2019.100665

    Article  CAS  Google Scholar 

  17. Tarasenko, M.S., Kiryakov, A.S., Ryadun, A.A., Kuratieva, N.V., Malyutina-Bronskaya, V.V., Fedorov, V.E., Wang, H.-C., and Naumov, N.G., Facile synthesis, structure, and properties of Gd2O2Se, J. Solid State Chem., 2022, vol. 312, p. 123224. https://doi.org/10.1016/j.jssc.2022.123224

    Article  CAS  Google Scholar 

  18. Suponitskii, Yu.L., Kuz’micheva, G.M., and Eliseev, A.A., Rare-earth oxysulfides, Usp. Khim., 1988, vol. 57, no. 3, pp. 367–384. https://doi.org/10.1070/RC1988v057n03ABEH003345

    Article  CAS  Google Scholar 

  19. Larquet, C. and Carenco, S., Metal oxysulfides: from bulk compounds to nanomaterials, Front. Chem., 2020, vol. 8, p. 179. https://doi.org/10.3389/fchem.2020.00179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eick, H.A., The crystal structure and lattice parameters of some rare earth mono-seleno oxides, Acta Crystallogr., 1960, vol. 13, no. 2, p. 161. https://doi.org/10.1107/S0365110X60000339

    Article  CAS  Google Scholar 

  21. Guittard, M., Flahaut, J., and Domange, L., The complete series of oxyselenides of the rare-earths and Y, Acta Crystallogr., 1966, vol. 21, no. 5, p. 832. https://doi.org/10.1107/S0365110X66003967

    Article  CAS  Google Scholar 

  22. Dernier, P.D., Bucher, E., and Longinotti, L.D., Temperature induced symmetry transformation in the Th3P4 type compounds La3S4, La3Se4, Pr3S4 and Pr3Se4, J. Solid State Chem., 1975, vol. 15, no. 2, pp. 203–207. https://doi.org/10.1016/0022-4596(75)90247-9

    Article  CAS  Google Scholar 

  23. Dugue, J., Adolphe, C., and Khodadad, P., Structure cristalline de l’oxyséléniure de lanthane La4O4Se3, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1970, no. 26, pp. 1627–1628. https://doi.org/10.1107/S0567740870004582

  24. Strobel, S., Choudhury, A., Dorhout, P.K., Lipp, C., and Schleid, T., Rare-earth metal(III) oxide selenides M4O4Se[Se2] (M = La, Ce, Pr, Nd, Sm) with discrete diselenide units: crystal structures, magnetic frustration, and other properties, Inorg. Chem., 2008, vol. 47, no. 11, pp. 4936–4944. https://doi.org/10.1021/ic800233c

    Article  CAS  PubMed  Google Scholar 

  25. Mehta, S.K., Chaudhary, S., Kumar, S., Bhasin, K.K., Torigoe, K., Sakai, H., and Abe, M., Surfactant assisted synthesis and spectroscopic characterization of selenium nanoparticles in ambient conditions, Nanotechnology, 2008, vol. 19, no. 29, p. 295601. https://doi.org/10.1088/0957-4484/19/29/295601

    Article  CAS  PubMed  Google Scholar 

  26. Van Overschelde, O., Guisbiers, G., and Snyders, R., Green synthesis of selenium nanoparticles by excimer pulsed laser ablation in water, APL Mater., 2013, vol. 1, no. 4, p. 042114. https://doi.org/10.1063/1.4824148

    Article  CAS  Google Scholar 

  27. Kubelka, P., New contributions to the optics of intensely light-scattering materials: Part I, J. Opt. Soc. Am., 1948, vol. 38, no. 5, pp. 448–457. https://doi.org/10.1364/JOSA.38.000448

    Article  CAS  PubMed  Google Scholar 

  28. Yannopoulos, S.N. and Andrikopoulos, K.S., Raman scattering study on structural and dynamical features of noncrystalline selenium, J. Chem. Phys., 2004, vol. 121, no. 10, pp. 4747–4758. https://doi.org/10.1063/1.1780151

    Article  CAS  PubMed  Google Scholar 

  29. Patterson, A.L., The Scherrer formula for X-ray particle size determination, Phys. Rev., 1939, vol. 56, pp. 978–982. https://doi.org/10.1103/PhysRev.56.978

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 20-53-00036 Bel_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Tarasenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pomelova, T.A., Tarasenko, M.S., Yushina, I.V. et al. Optimization of R2O2Se (R = La, Gd, Y) Synthesis for the Preparation of Optical Materials. Inorg Mater 59, 12–20 (2023). https://doi.org/10.1134/S0020168523010168

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523010168

Keywords:

Navigation