Skip to main content
Log in

Synthesis, Crystal Structure, and Thermodynamic Properties of the CaSm2Ge3O10 Germanate in the Range 320–1000 K

  • Published:
Inorganic Materials Aims and scope

Abstract—

The CaSm2Ge3O10 germanate has been prepared by firing stoichiometric mixtures of CaCO3, Sm2O3, and GeO2 in air in the temperature range 1423–1473 K. X-ray powder diffraction characterization with the use of the derivative difference minimization method has shown that CaSm2Ge3O10 has a monoclinic structure (sp. gr. P21/c, 293 К) with unit-cell parameters a = 6.9779(8) Å, b = 6.92859(7) Å, c = 18.8907(2) Å, and β = 108.3280(8)°. The high-temperature heat capacity of calcium samarium germanate samples has been determined in the temperature range 320–1000 K by differential scanning calorimetry and the experimental Cp(T) data have been used to evaluate thermodynamic properties of CaSm2Ge3O10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Yamane, H., Tanimura, R., Yamada, T., et al., Synthesis and crystal structure of CaY2Ge3O10 and CaY2Ge4O12, J. Solid State Chem., 2006, vol. 179, pp. 289–295. https://doi.org/10.1016/j.jss.2005.10.023

    Article  CAS  Google Scholar 

  2. Lipina, O.A., Surat, L.L., Melkozerova, M.A., et al., Synthesis, crystal structure and luminescence properties of CaY2–xEuxGe3O10 (x = 0–2), J. Solid State Chem., 2013, vol. 206, pp. 117–121. https://doi.org/10.1016/j.jssc.2013.08.002

    Article  CAS  Google Scholar 

  3. Lipina, O.A., Surat, L.L., Melkozerova, M.A., et al., Synthesis, crystal structure, and luminescence properties of CaY2Ge3O10:Ln3+, Ln = Eu, Tb, Opt. Spectrosc., 2014, vol. 116, no. 5, pp. 695–699. https://doi.org/10.1134/S0030400X14050130

    Article  CAS  Google Scholar 

  4. Lipina, O.A., Surat, L.L., Tyutyunnik, A.P., et al., Synthesis and structural study of a new group of trigermanates, CaRE2Ge3O10 (RE = La–Yb), CrystEngComm, 2015, pp. 1–12. https://doi.org/10.1039/c5ce00063g

  5. Lipina, O.A., Surat, L.L., Tyutyunnik, A.P., et al., Infrared luminescence of CaLa2–xNdxGe3O10: Ho3+,Er3+, Opt. Spectrosc., 2016, vol. 121, no. 4, pp. 511–517. https://doi.org/10.1134/S0030400X1610012X

    Article  CAS  Google Scholar 

  6. Lipina, O.A., Surat, L.L., Baklanova, Ya.V., et al., Thermal expansion and luminescent properties of triorthogermanates CaLa2–xEuxGe3O10 (x = 0.0–0.6), Phys. Solid State, 2018, vol. 60, no. 2, pp. 370–375. https://doi.org/10.1134/S1063783418020154

    Article  CAS  Google Scholar 

  7. Lipina, O.A., Surat, L.L., Chufarov, A.Y., et al., Upconversion luminescence and radiometric temperature sensing behavior of Er3+/Yb3+-Codoped CaY2Ge3O10 germanate, Mendeleev Commun., 2021, vol. 31, no. 1, pp. 113–151. https://doi.org/10.1016/j.mencom.2021.01.035

    Article  CAS  Google Scholar 

  8. Lipina, O.A., Surat, L.L., Melentsova, A.A., et al., BaYb2xErxGe3O10 and BaY2–10yYb9yEryGe3O10: luminescent properties and prospects for applications in remote temperature determination, Phys. Solid State, 2021, vol. 63, no. 7, pp. 1036–1041. https://doi.org/10.1134/S1063783421070143

    Article  CAS  Google Scholar 

  9. Visser, J.W., A fully automatic program for finding the unit cell from powder data, J. Appl. Crystallogr., 1969, vol. 2, pp. 89–95.

    Article  CAS  Google Scholar 

  10. Solovyov, L.A., Full-profile refinement by derivative difference minimization, J. Appl. Crystallogr., 2004, vol. 37, pp. 743–749. https://doi.org/10.1107/S0021889804015638

    Article  CAS  Google Scholar 

  11. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., Beletskii, V.V., and Denisov, V.M., High-temperature heat capacity and thermodynamic properties of Tb2Sn2O7, Inorg. Mater., 2017, vol. 53, no. 1, pp. 93–95. https://doi.org/10.1134/S0020168517010046

    Article  CAS  Google Scholar 

  12. Denisova, L.T., Kargin, Yu.F., and Denisov, V.M., Heat capacity of rare-earth stannates in the range 350–1000 K, Inorg. Mater., 2017, vol. 53, no. 9, pp. 956–961. https://doi.org/10.1134/S0020168517090059

    Article  CAS  Google Scholar 

  13. Maier, C.G. and Kelley, K.K., An equation for the representation of high temperature heat content data, J. Am. Chem. Soc., 1932, vol. 54, no. 8, pp. 3243–3246. https://doi.org/10.1021/ja01347a029

    Article  CAS  Google Scholar 

  14. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., et al., Synthesis and high-temperature heat capacity of Sm2Ge2O7 and Eu2Ge2O7, Inorg. Mater., 2018, vol. 54, no. 2, pp. 167–170. https://doi.org/10.1134/S0020168518020048

    Article  CAS  Google Scholar 

  15. Leitner, J., Chuchvalec, P., Sedmidubský, D., et al., Estimation of heat capacities of solid mixed oxides, Thermochim. Acta, 2003, vol. 395, pp. 27–46. https://doi.org/10.1016/S0040-6031(02)00176-6

    Article  CAS  Google Scholar 

  16. Leitner, J., Voňka, P., Sedmidubský, D., and Svoboda, P., Application of Neumann–Kopp rule for estimation of heat capacity of mixed oxides, Thermochim. Acta, 2010, vol. 497, pp. 7–13. https://doi.org/10.1016/j.tca.2009.08.002

    Article  CAS  Google Scholar 

  17. Kumok, V.N., Problem of matching techniques for evaluating thermodynamic characteristics, in Pryamye i obratnye zadachi khimicheskoi termodinamiki (Direct and Inverse Problems in Chemical Thermodynamics), Novosibirsk: Nauka, 1987, pp. 108–123.

  18. Kubaschewski, O. and Alcock, S.B., Metallurgical Thermochemistry, Oxford: Pergamon, 1979, 5th ed.

    Google Scholar 

  19. Mostafa, A.T.M.G., Eakman, J.M., Montoya, M.M., and Yarbra, S.L., Prediction of heat capacities of solid inorganic salts from group contributions, Ind. Eng. Chem. Res., 1996, vol. 35, pp. 343–348.

    Article  CAS  Google Scholar 

  20. Leitner, J., Sedmidubský, D., and Chuchvalec, P., Prediction of heat capacities of solid binary oxides from group contribution method, Ceram.-Silik., 2002, vol. 46, no. 1, pp. 29–32.

    CAS  Google Scholar 

  21. Tret’yakov, Yu.D., Tverdofaznye reaktsii (Solid-State Reactions), Moscow: Khimiya, 1978.

  22. Zhang, Y. and Jung, I.-H., Critical evaluation of thermodynamic properties of rare earth sesquioxides (RE = La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y), CALPHAD: Comp. Coupling Phase Diagr. Thermochem., 2017, vol. 58, pp. 169–203. https://doi.org/10.1016/j.calphad.2017.07.001

    Article  CAS  Google Scholar 

  23. Tananaev, I.V. and Shpirt, M.Ya., Khimiya germaniya (The Chemistry of Germanium), Moscow: Khimiya, 1967.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Denisova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisova, L.T., Galiakhmetova, N.A., Kargin, Y.F. et al. Synthesis, Crystal Structure, and Thermodynamic Properties of the CaSm2Ge3O10 Germanate in the Range 320–1000 K. Inorg Mater 59, 93–97 (2023). https://doi.org/10.1134/S0020168523010065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523010065

Keywords:

Navigation