Skip to main content
Log in

Structural and Electronic Properties of SmGaGe2O7 Studied by First Principles Methods

  • Published:
Inorganic Materials Aims and scope

Abstract—

The crystal structure and electronic properties of the samarium gallium digermanate SmGaGe2O7 have been studied for the first time using first principles quantum-mechanical methods. The lattice parameters and the position of ions obtained in the generalized gradient approximation agree with experimental data. The material is shown to be an indirect band gap semiconductor with a band gap of 2.45 eV. Its valence band is formed by oxygen p-states, with an insignificant contribution of other states of the other atoms. Its conduction band is formed by gallium and germanium s- and p-states, with a small contribution of oxygen p-states and samarium d-states, located ≈1 eV from the conduction band bottom. The material contains charge carriers differing in effective mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Shakhno, I.V., Shevtsova, Z.N., Fedorov, P.I., and Korovin, S.S., Khimiya i tekhnologiya redkikh i rasseyannykh elementov (Chemistry and Technology of Rare and Trace Elements), Moscow: Vysshaya Shkola, 1976, part 2.

  2. Juarez-Arellano, E.A., Bucio, L., Ruvalcaba, J.L., Moreno-Tovar, R., Garcia-Robledo, J.F., and Orozco, E., The crystal structure of InYGe2O7 germanate, Cryst. Mater., 2002, vol. 217, no. 5, pp. 201–204. https://doi.org/10.1524/zkri.217.5.201.20636

    Article  CAS  Google Scholar 

  3. Juarez-Arellano, E.A., Rosales, I., Bucio, L., and Orozco, E., In1.08Gd0.92Ge2O7: a new member of the thortveitite family, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2002, vol. C58, pp. i135–i137. https://doi.org/10.1107/S0108270102013343

    Article  CAS  Google Scholar 

  4. Chang, Y.-S., Lin, H.-J., Chai, Y.-L., and Li, Y.-C., Preparation and luminescent properties of europium-activated YInGe2O7 phosphors, J. Alloys Compd., 2008, vol. 460, nos. 1–2, pp. 421–425. https://doi.org/10.1016/j.jallcom.2007.05.060

    Article  CAS  Google Scholar 

  5. Juarez-Arellano, E.A., Campa-Molina, J., Ulloa-Godinez, S., Bucio, L., and Orozco, E., Crystallochemistry of thortveitite-like and thortveitite-type compounds, MRS Proc., 2005, vol. 848, pp. FF6.15.1–FF6.15.8. https://doi.org/10.1557/PROC-848-FF6.15

  6. Juarez-Arellano, E.A., Rosales, I., Oliver, A., Ruvalcaba, J.L., Carbonio, R.E., Bucio, L., and Orozco, E., In1.06Ho0.94Ge2O7: a thortveitite-type compound, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2004, vol. C60, pp. i14–i16. https://doi.org/10.1107/S0108270103029056

    Article  CAS  Google Scholar 

  7. Gaewdang, T., Chaminade, J.P., Gravereau, P., Garcia, A., Fouassier, C., Pouchard, M., Hagenmuller, P., and Jacquier, B., Structural investigations and luminescence of In2Ge2O7 and In2Si2O7, J. Inorg. Gen. Chem., 1994, vol. 620, no. 11, pp. 1965–1970. https://doi.org/10.1002/zaac.19946201121

    Article  CAS  Google Scholar 

  8. Juarez-Arellano, E.A., Bucio, L., Hernandez, J.A., Camarillo, E., Carbonio, R.E., and Orozco, E., Synthesis, crystal structure, and preliminary study of luminescent properties of InTbGe2O7, J. Solid State Chem., 2003, vol. 170, pp. 418–423. https://doi.org/10.1016/S0022-4596(02)00134-2

    Article  CAS  Google Scholar 

  9. Kazei, Z.A., Kuyanov, I.A., Levitin, P.Z., Markosyan, A.S., Mill’, B.V., Reiman, S.I., Snegirev, V.V., and Tamazyan, S.A., Ordering of the iron and rare-earth magnetic subsystems and metamagnetic transitions in the RFeGe2O7 (R = Tb–Yb, Y) compounds, Fiz. Tverd. Tela (Leningrad), 1989, vol. 31, no. 2, pp. 105–111.

    CAS  Google Scholar 

  10. Cascales, C., Fernandez-Diaz, M.T., Monge, M.A., and Bucio, L., Crystal structure and low-temperature magnetic ordering in rare earth iron germanates RFeGe2O7, R = Y, Pr, Dy, Tm, and Yb, Chem. Mater., 2002, vol. 14, no. 5, pp. 1995–2003. https://doi.org/10.1021/cm0111332

    Article  CAS  Google Scholar 

  11. Mill’, B.V., Kazei, Z.A., Reiman, S.I., Tamazyan, S.A., Khamdamov, F.D., and Bykova, L.Yu., Magnetic and Mössbauer studies of RFeGe2O7 (R = La–Gd) new antiferromagnetic compounds, Vestn. Mosk. Gos. Univ., Ser. 3: Fiz. Astron., 1987, vol. 28, no. 4, pp. 95–98.

    Google Scholar 

  12. Bucio, L., Cascales, C., Alonso, J.A., and Rasines, I., Neutron diffraction refinement and characterization of FeRGe2O7 (R = La, Pr, Nd, Gd), J. Phys.: Condens. Matter, 1996, vol. 8, pp. 2641–2653. https://doi.org/10.1088/0953-8984/8/15/013

    Article  CAS  Google Scholar 

  13. Shih, H.R. and Chang, Y.S., Structure and photoluminescence properties of Sm3+ ion-doped YInGe2O7 phosphor, Materials, 2017, vol. 10, no. 7, p. 779. https://doi.org/10.1088/0953-8984/8/15/013

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yang, R.Y., Chen, H.Y., Hsiung, C.M., and Chang, S.J., Crystalline morphology and photoluminescent properties of YInGe2O7:Eu3+ phosphors prepared from microwave and conventional sintering, Ceram. Int., 2011, vol. 37, no. 3, pp. 749–752. https://doi.org/10.1016/j.ceramint.2010.10.001

    Article  CAS  Google Scholar 

  15. Dai, P.L., Tsai, B.S., Tsai, Y.Y., Chen, H.L., Fang, T.H., and Liao, K.H., Synthesis and luminescence properties of YInGe2O7 phosphors activated by dysprosium ions, Opt. Mater., 2009, vol. 32, no. 2, pp. 392–397. https://doi.org/10.1016/j.optmat.2009.09.011

    Article  CAS  Google Scholar 

  16. Lin, H.J. and Chang, Y.S., Blue-emitting phosphor of YInGe2O7 doped with Tm3+ ions, Electrochem. Solid-State Lett., 2007, vol. 10, no. 7, pp. J79–J82. https://doi.org/10.1149/1.2732076

    Article  CAS  Google Scholar 

  17. Teoh, L.G., Tsai, M.T., Chang, Y.C., and Chang, Y.S., Photoluminescence properties of Pr3+ ion-doped YInGe2O7 phosphor under an ultraviolet irradiation, Ceram. Int., 2018, vol. 44, no. 3, pp. 2656–2660. https://doi.org/10.1016/j.ceramint.2017.10.163

    Article  CAS  Google Scholar 

  18. Tsai, Y.Y., Chen, H.L., Chai, Y.L., and Chang, Y.S., Photoluminescence properties of Bi3+-doped YInGe2O7 phosphors under an ultraviolet irradiation, Opt. Mater., 2013, vol. 35, no. 3, pp. 317–321. https://doi.org/10.1016/j.optmat.2012.07.010

    Article  CAS  Google Scholar 

  19. Drokina, T.V., Petrakovskii, G.A., Velikanov, D.A., and Molokeev, M.S., Specific features of magnetic ordering in the SmFeGe2O7 compound, Phys. Solid State, 2014, vol. 56, no. 6, pp. 1131–1136.

    Article  CAS  Google Scholar 

  20. Denisova, L.T., Irtyugo, L.A., Belousova, N.V., Beletsky, V.V., Denisov, V.M., and Kargin, Yu.F., Heat capacity and thermodynamic properties of Yb2Ge2O7 and Lu2Ge2O7 in the range of 350–1000 K, Appl. Solid State Chem., 2018, no. 4, pp. 44–49. https://doi.org/10.18572/2619-0141-2018-4-5-44-49

  21. Denisova, L.T., Irtyugo, L.A., Beletskii, V.V., Belousova, N.V., and Denisov, V.M., High-temperature heat capacity of germanates Pr2Ge2O7 and Nd2Ge2O7 within 350–1000 K. Phys. Solid State, 2018, vol. 60, no. 3, pp. 626–630. https://doi.org/10.1134/S1063783418030071

    Article  CAS  Google Scholar 

  22. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., Belousova, N.V., Beletskii, V.V., and Denisov, V.M., Synthesis and high-temperature heat capacity of Dy2Ge2O7 and Ho2Ge2O7, Inorg. Mater., 2018, vol. 54, no. 4, pp. 361–365. https://doi.org/10.1134/S0020168518040039

    Article  CAS  Google Scholar 

  23. Denisova, L.T., Kargin, Yu.F., Irtyugo, L.A., Belousova, N.V., Beletskii, V.V., and Denisov, V.M., Heat capacity of In2Ge2O7 and YInGe2O7 from 320 to 1000 K, Inorg. Mater., 2018, vol. 54, no. 12, pp. 1245–1249. https://doi.org/10.1134/S0020168518120026

    Article  CAS  Google Scholar 

  24. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., Beletskii, V.V., and Denisov, V.M., Synthesis and high-temperature heat capacity of Y2Ge2O7, Russ. J. Inorg. Chem., 2018, vol. 63, no. 3, pp. 361–363. https://doi.org/10.1134/S003602361803004X

    Article  CAS  Google Scholar 

  25. Denisova, L.T., Irtyugo, L.A., Beletskii, V.V., Belousova, N.V., and Denisov, V.M., Specific Heat of the Er2Ge2O7–Er2Sn2O7 Solid Solutions in the Temperature Range of 350–1000 K, Phys. Solid State, 2019, vol. 61, no. 4, pp. 537–540. https://doi.org/10.1134/S1063783419040061

    Article  CAS  Google Scholar 

  26. Denisova, L.T., Kargin, Yu.F., Belousova, N.V., Irtyugo, L.A., Denisov, V.M., and Beletskii, V.V., Heat Capacity of the R2Ge2O7 (R = Pr–Lu, Y) Rare-Earth Germanates, Inorg. Mater., 2019, vol. 55, no. 9, pp. 952–958. https://doi.org/10.1134/S0036023619090079

    Article  CAS  Google Scholar 

  27. Denisova, L.T., Irtyugo, L.A., Belousova, N.V., Beletskii, V.V., and Denisov, V.M., High temperature heat capacity and thermodynamic properties of Tm2Ge2O7 and TmInGe2O7 in the region of 350–1000 K, Russ. J. Phys. Chem. A, 2019, vol. 93, no. 3, pp. 598–601. https://doi.org/10.1134/S003602441903004X

    Article  CAS  Google Scholar 

  28. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., Beletskii, V.V., Belousova, N.V., and Denisov V.M., Heat capacity and thermodynamic functions of DyInGe2O7 and HoInGe2O7 germanates in the temperature range 350–1000 K, Russ. J. Inorg. Chem., 2019, vol. 64, no. 9, pp. 1161–1164. https://doi.org/10.1134/S0036023619090079

    Article  CAS  Google Scholar 

  29. Denisova, L.T., Kargin, Yu.F., Irtyugo, L.A., Belousova, N.V., Beletskii, V.V., and Denisov, V.M., Synthesis and thermodynamic properties of germanate Tb2Ge2O7, Russ. J. Inorg. Chem., 2019, vol. 64, no. 7, pp. 886–889. https://doi.org/10.1134/S0036023619070052

    Article  CAS  Google Scholar 

  30. Denisova, L.T., Molokeev, M.S., Irtyugo, L.A., Beletskii, V.V., Belousova, N.V., and Denisov, V.M., Structure and thermodynamic properties of the SmGaGe2O7 oxide, Phys. Solid State, 2020, vol. 62, no. 2, pp. 384–387. https://doi.org/10.1134/S1063783420020109

    Article  CAS  Google Scholar 

  31. Denisova, L.T., Molokeev, M.S., Irtyugo, L.A., Beletskii, V.V., Kargin, Yu.F., and Denisov, V.M., Synthesis, structure, and thermophysical properties of EuGaGe2O7, Inorg. Mater., 2020, vol. 56, no. 8, pp 854–858. https://doi.org/10.1134/S002016852008004X

    Article  CAS  Google Scholar 

  32. Denisova, L.T., Kargin, Yu.F., Irtyugo, L.A., Beletskii, V.V., Belousova, N.V., and Denisov, V.M., High-temperature heat capacity of the PrFeGe2O7 and NdFeGe2O7 germanates in the range 350–1000 K, Inorg. Mater., 2020, vol. 56, no. 7, pp. 754–758. https://doi.org/10.1134/S0020168520070043

    Article  CAS  Google Scholar 

  33. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., Beletskii, V.V., Belousova, N.V., and Denisov, V.M., Synthesis and high-temperature heat capacity of the YbInGe2O7 and LuInGe2O7 germanates in the range 350–1000 K, Inorg. Mater., 2020, vol. 56, no. 2, pp. 151–155. https://doi.org/10.1134/S0020168520020041

    Article  CAS  Google Scholar 

  34. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., Beletskii, V.V., Belousova, N.V., and Denisov, V.M., Heat Capacity and thermodynamic properties of Gd2Ge2O7 from 350 to 1000 K, Inorg. Mater., 2020, vol. 56, no. 1, pp. 62–65. https://doi.org/10.1134/S0020168520010033

    Article  CAS  Google Scholar 

  35. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., Beletskii, V.V., Belousova, N.V., and Denisov, V.M., Synthesis and high-temperature thermodynamic properties of InFeGe2O7 and GdFeGe2O7, Russ. J. Inorg. Chem., 2020, vol. 65, no. 7, pp. 955–959. https://doi.org/10.1134/S0036023620070049

    Article  CAS  Google Scholar 

  36. Denisova, L.T., Kargin, Yu.F., Irtyugo, L.A., Beletskii, V.V., Belousova, N.V., and Denisov, V.M., Germanate NdGaGe2O7: synthesis, structure, and thermophysical properties, Russ. J. Inorg. Chem., 2020, vol. 65, no. 5, pp. 631–635. https://doi.org/10.1134/S0036023620050071

    Article  CAS  Google Scholar 

  37. Denisova, L.T., Molokeev, M.S., Krylova, A.S., Aleksandrovskii, A.S., Irtyugo, L.A., Beletskii, V.V., and Denisov, V.M., Synthesis, crystal structure, luminescence, and thermophysical properties of TbGaGe2O7, Phys. Solid State, 2021, vol. 63, no. 1, pp. 75–78. https://doi.org/10.1134/S106378342101008X

    Article  CAS  Google Scholar 

  38. Irtyugo, L.A., Denisova, L.T., Molokeev, M.S., Denisov, V.M., Aleksandrovskii, A.S., Beletskii, V.V., and Sivkova, E.Yu., Synthesis, crystal structure, and the optical and thermodynamic properties of PrAlGe2O7, Russ. J. Phys. Chem. A, 2021, vol. 95, no. 8, pp. 1546–1550. https://doi.org/10.1134/S0036024421080124

    Article  CAS  Google Scholar 

  39. Ozaki, T., Variationally optimized atomic orbitals for large-scale electronic structures, Phys. Rev. B: Condens. Matter Mater. Phys., 2003, vol. 67, no. 15, p. 155108. https://doi.org/10.1103/PhysRevB.67.155108

    Article  CAS  Google Scholar 

  40. Ozaki, T. and Kino, H., Numerical atomic basis orbitals from H to Kr, Phys. Rev. B: Condens. Matter Mater. Phys., 2004, vol. 69, no. 19, p. 195113. https://doi.org/10.1103/PhysRevB.69.195113

    Article  CAS  Google Scholar 

  41. Ozaki, T. and Kino, H., Efficient projector expansion for the ab initio LCAO method, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 72, no. 4, p. 045121. https://doi.org/10.1103/PhysRevB.72.045121

    Article  CAS  Google Scholar 

  42. Perdew, J.P., Burke, K., and Ernzerhof, M., Generalized gradient approximation made simple, Phys. Rev. Lett., 1996, vol. 77, no. 18, pp. 3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Baglov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baglov, A.V., Khoroshko, L.S. Structural and Electronic Properties of SmGaGe2O7 Studied by First Principles Methods. Inorg Mater 59, 1–7 (2023). https://doi.org/10.1134/S002016852301003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852301003X

Keywords:

Navigation