Skip to main content
Log in

Effect of Annealing on the Electrical Properties of (Bi + Sn)–Pb0.75Sn0.25Тe〈Sn〉 and (In + Ag + Au)–Pb0.75Sn0.25Тe〈Sn〉 Structures

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have grown single crystals of the Pb0.75Sn0.25Тe solid solution containing up to 1.0 at % hyperstoichiometric Sn and produced metal–semiconductor structures based on the crystals with the use of Bi + Sn and In + Ag + Au eutectics. The effect of annealing on their electrical properties has been studied in the temperature range ~77–300 K. We assume that, filling vacancies in the Pb and Sn sublattices of the crystals, small amounts of excess Sn atoms reduce carrier concentration n, causing an increase in the resistivity ρ of the crystals and the specific contact resistance rc of the structures. High Sn concentrations lead to the formation of additional donor centers in the crystals, increasing n and, accordingly, reducing ρ and rc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Dmitriev, A.V. and Zvyagin, I.P., Current trends in the development of the physics of thermoelectric materials, Usp. Fiz. Nauk, 2010, vol. 180, no. 8, pp. 821–838. https://doi.org/10.3367/UFNr.0180.201008b.0821

    Article  CAS  Google Scholar 

  2. Ikonnikov, A.V., Dudin, V.S., Artamkin, A.I., Akimov, A.N., Klimov, A.E., Ryabova, L.I., and Khokhlov, D.R., Optical and transport properties of epitaxial Pb0.74Sn0.26Te(In) films with a modifiable surface, Semiconductors, 2020, vol. 54, no. 9, pp. 1086–1091. https://doi.org/10.1134/S1063782620090134

    Article  Google Scholar 

  3. Okhotin, A.S., Efremov, A.A., Okhotin, V.S., and Pushkarskii, A.S., Termoelektricheskie generatory (Thermoelectric Generators), Moscow: Atomizdat, 1976.

  4. Khokhlov, D.R., Ivanchik, I.I., Raines, S.N., Watson, D.M., and Pipher, J.L., Performance and spectral response of Pb1 – xSnxTe(In) far-infrared photodetectors, Appl. Phys. Lett., 2000, vol. 76, no. 20, pp. 2835–2839. https://doi.org/10.1063/1.126489

    Article  CAS  Google Scholar 

  5. Vainer, A.L., Kaskadnye termoelektricheskie istochniki kholoda (Cascade Thermoelectric Coolers), Moscow: Sovetskoe Radio, 1976.

  6. Shtern, M.Yu., Karavaev, I.S., Rogachev, M.S., Shtern, Yu.I., Mustafoev, B.R., Korchagin, E.P., and Kozlov, A.O., Methods for investigation of the electrical contact resistance in a metal film/semiconductor structure, Fiz. Tekh. Poluprovodn., 2022, vol. 56, no. 1, pp. 31–37. https://doi.org/10.21883/FTP.2022.01.51808.24

    Article  Google Scholar 

  7. Stafeev, V.I., Structure and properties of CdxHg1 – xTe–metal contacts, Semiconductors, 2009, vol. 43, no. 5, pp. 608–611. https://doi.org/10.1134/S1063782609050133

    Article  CAS  Google Scholar 

  8. Alieva, T.D. and Abdinov, D.Sh., Physicochemical and electrical phenomena at the interface between crystals of Bi2Te3–Sb2Te3 and Bi2Te3–Bi2Se3 solid solutions and contact materials, Inorg. Mater., 1997, vol. 33, no. 1, pp. 22–31.

    CAS  Google Scholar 

  9. Barkhalov, B.Sh., Akhundova, N.M., and Abdinov, D.Sh., A study of interfaces of Bi2Te3–Sb2Te3 and Bi2Te3–Bi2Se3 solid solutions and alloys of the Bi2Te3–Sb2Te3 and Bi2Te3–Bi2Se3 systems with contact materials, Izv. Akad. Nauk SSSR, Inorg. Mater., 1990, vol. 26. no. 7, pp. 1427–1431.

    CAS  Google Scholar 

  10. Shtern, M.Yu., Kozlov, A.O., Shtern, Yu.I., Rogachev, M.S., Korchagin, E.P., Mustafaev, B.R., and Dedkova, A.A., Preparation and characterization of Ohmic contacts with good adhesion to thermoelements, Semiconductors, 2021, vol. 55, no. 12, pp. 1097–1104. https://doi.org/10.21883/FTP.2021.12.51689.01

    Article  Google Scholar 

  11. Alieva, T.D., Abdinova, G.D., Akhundova, N.M., Ismaiylova, R.A., and Abdinov, D.Sh., Physicochemical processes at the boundary between some semiconducting solid solutions and contact alloys, Russ. J. Phys. Chem. A, 2009, vol. 83, no. 12, pp. 2133–2135. https://doi.org/10.1134/S0036024409120231

    Article  CAS  Google Scholar 

  12. Kaidanov, V.I. and Ravich, Yu.I., Deep and resonance levels in IV–VI semiconductors, Usp. Fiz. Nauk, 1985, vol. 145, no. 1, pp. 51–56. https://doi.org/10.3367/UFNr.0145.198501b.0051

    Article  CAS  Google Scholar 

  13. Ryabova, L.I. and Khokhlov, D.R., Terahertz photoconductivity and nontrivial local electronic states in doped lead telluride-based semiconductors, Phys. Usp., 2014, vol. 57, no. 10, pp. 959–969. https://doi.org/10.3367/UFNe.0184.201410b.1033

    Article  CAS  Google Scholar 

  14. Belokon’, S.A., Vereshchagina, L.N., Ivanchik, I.I., Ryabova, L.I., and Khokhlov, D.R., Effect of doping level on the properties of PbTe〈Ga〉, Fiz. Tekh. Poluprovodn. (S.-Peterburg), 1992, vol. 26, no. 2, pp. 264–269.

  15. Bagiyeva, G.Z., Mustafayev, N.B., Abdinova, G.Dj., and Abdinov, D.Sh, Electrical properties of PbTe single crystals with excess tellurium, Semiconductors, 2011, vol. 45, no. 11, pp. 1391–1394.

    Article  CAS  Google Scholar 

  16. Akhundova, N.M. and Abdinova, G.D., Electric charge and heat transport in SnTe crystals differing in Sn vacancy concentration, Izv. Vyssh. Uchbn. Zaved., Fiz., 2020, vol. 63, no. 7, pp. 120–124. https://doi.org/10.17223/00213411/63/7/120

    Article  Google Scholar 

  17. Bagieva, G.Z., Abdinova, G.D., Mustafaev, N.B., and Abdinov, D.Sh., Thermal conductivity of Sn–SnTe alloys, Inorg. Mater., 2020, vol. 56, no. 7, pp. 690–694. https://doi.org/10.1134/S002016852007002X

    Article  CAS  Google Scholar 

  18. Ravich, Yu.I., Efimova, B.A., and Smirnov, I.A., Metody issledovaniya poluprovodnikov v primenenii khal’kogenidam svintsa PbTe, PbSe, PbS (Semiconductor Characterization Techniques with Application to the PbTe, PbSe, and PbS Lead Chalcogenides), Moscow: Nauka, 1968.

  19. Abrikosov, N.Kh. and Shelimova, L.E., Poluprovodnikovye materialy na osnove soedinenii A IV B VI (IV–VI Semiconductor Materials), Moscow: Nauka, 1975.

  20. Aliyeva, T.D., Abdinova, G.D., Akhundova, N.M., and Dafarova, S.Z., Current flow mechanism in contact (In–Ag–Au)–Pb1 – xMnxTe, Trans. Natl. Acad. Sci. Az., Ser. Phys.–Math. Tech. Sci. Phys. Astron., 2011, vol. 31, no. 2, pp. 126–130.

    Google Scholar 

  21. Fiziko-khimicheskie svoistva poluprovodnikovykh veshchestv: Spravochnik (Physicochemical Properties of Semiconductors: A Handbook), Novoselova, A.V., Lazarev, V.B., Eds., Moscow: Nauka, 1979.

    Google Scholar 

  22. Kratkii spravochnik fiziko-khimicheskikh velichin (Concise Handbook of Physicochemical Quantities), Mishchenko, K.P. and Ravdeli, A.A., Eds., Leningrad: Khimiya, 1967.

    Google Scholar 

  23. Blank T.V. and Gol’dberg, Yu.A., Mechanisms of current flow in metal–semiconductor ohmic contacts, Semiconductors, 2007, vol. 41, no. 11, pp. 1263–1292.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. D. Aliyeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhundova, N.M., Aliyeva, T.D. Effect of Annealing on the Electrical Properties of (Bi + Sn)–Pb0.75Sn0.25Тe〈Sn〉 and (In + Ag + Au)–Pb0.75Sn0.25Тe〈Sn〉 Structures. Inorg Mater 59, 21–25 (2023). https://doi.org/10.1134/S0020168523010016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168523010016

Keywords:

Navigation