Skip to main content
Log in

Development of the Optimal Shape and Reinforcement Structure of the Specimen for Adequate Determination of the Tensile Strength of Unidirectional Composites

  • MATERIALS MECHANICS: STRENGTH, DURABILITY, SAFETY
  • Published:
Inorganic Materials Aims and scope

Abstract

Unidirectional composites exhibit the highest strength when stretched along the fibers. However, the proper determination of the strength faces great methodological difficulties. The main problems of tensile testing of polymer composites consisted in development of the specimen shape and the method of specimen fixation which ensure the minimum impact of the stress concentration near the grips on the strength measurements. A conventional shape of the specimen with fillets is unsuitable for unidirectional polymers owing to the splitting occurring in the fillet zones upon loading. Therefore, the specimens are usually standardized in the form of rectangular strips fixed using tabs or special grips which provide constant transverse forces. However, with such a specimen shape, a significant stress concentration inevitably occurs at the edge of grips, and the lower the ratio of the interlayer shear modulus to the longitudinal Young’s modulus, the greater the stress concentration impact. For the purpose of the most correct determination of the strength, we propose to use specimens with smoothly varying dimensions at the same cross-sectional area which ensures keeping the total number of unbroken fibers in each section. The specimen thickness decreases when moving from the working part of the specimen to the gripping part, whereas the width (while maintaining the section area) grows to prevent the collapse of the specimen resulting from transverse forces in standard self-tightening grips. Analytical and FEM modeling is performed to select a rational contour shape. Technological equipment has been developed, and a procedure of manufacturing testing specimens has been worked out. The tensile test of specially manufactured curvilinear reinforced specimens showed higher strength values compared to standard rectangular strips or specimens with semicircular fillets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Polilov, A.N. and Tatus’, N.A., Biomekhanika prochnosti voloknistykh kompozitov (Strength Biomechanics of Fibrous Composites), Moscow: Fizmatlit, 2018.

  2. Polilov, A.N., Eksperimental’naya mekhanika kompozitov (Experimental Mechanics of Composites), Moscow: MGTU im. N. E. Baumana, 2015.

  3. Malakhov, A.V. and Polilov, A.N., Design algorithm of rational fiber trajectories in arbitrarily loaded composite plate, J. Mach. Manuf. Reliab., 2017, vol. 46, no. 5, pp. 479–487.

    Article  Google Scholar 

  4. Fedorova, N.A., Mathematical modelling for extreme deformations of planar constructions reinforced with curvilinear trajectories, Vestn. SibGAU, 2014, no. 1, pp. 91–94.

  5. Crothers, P.J., Drechsler, K., Feltin, D., Herszberg, I., and Kruckenberg, T., Tailored fibre placement to minimise stress concentrations, Composites, Part A, 1997, vol. 28, no. 7, pp. 619–625.

    Article  Google Scholar 

  6. Hyer, M.W. and Charette, R.F., The use of curvilinear fiber format in composite structure design, AIAA J., 1991, vol. 29, no. 6, pp. 1011–1015.

    Article  Google Scholar 

  7. Lemaire, E., Zein, S., and Bruyneel, M., Optimization of composite structures with curved fiber trajectories, Compos. Struct., 2015, vol. 131, no. 5, pp. 895–904.

    Article  Google Scholar 

  8. Malakhov, A.V. and Polilov, A.N., Design of composite structures reinforced curvilinear fibres using FEM, Composites, 2016, vol. 87, pp. 323–328. https://doi.org/10.1016/j.compositesa.2016.04.005

    Article  Google Scholar 

  9. Malakhov, A.V., Polilov, A.N., and Tian, X., Progressive failure analysis of variable stiffness composite structures, AIP Conf. Proc., 2018, vol. 2053, p. 030038. https://doi.org/10.1063/1.5084399

    Article  Google Scholar 

  10. Pedersen, P., Examples of density, orientation, and shape-optimal 2D-design for stiffness and/or strength with orthotropic materials, Struct. Multidisc. Opt., 2004, vol. 26, no. 1, pp. 37–49.

    Article  Google Scholar 

  11. Spickenheuer, A., Schulz, M., Gliesche, K., and Heinrich, G., Using tailored fibre placement technology for stress adapted design of composite structures, Plast. Rubber Composites Macromol. Eng., 2008, vol. 37, no. 5, pp. 227–232.

    Article  CAS  Google Scholar 

  12. Tosh, M.W. and Kelly, D.W., On the design, manufacture and testing of trajectorial fibre steering for carbon fibre composite laminates, Composites, Part A, 2000, vol. 31, no. 10, pp. 1047–1060.

    Article  Google Scholar 

  13. Gotselyuk, T.B., Grishin, V.I., and Kovalenko, N.A., Strength research of bolted joints in composite laminates by using a progressive damage model, Mekh. Kompozits. Mater. Konstr., 2016, vol. 22, no. 2, pp. 225–244.

    Google Scholar 

  14. Kokina, T.M. and Shafigullin, L.N., Evaluation of the influence of the properties of composite materials on the parameters of bolted connections of parts, Prikl. Fiz., 2018, no. 4, pp. 106–110.

  15. Grüber, B., Hufenbach, W., Kroll, L., Lepper, M., and Zhou, B., Stress concentration analysis of fibre-reinforced multilayered composites with pin-loaded holes, Compos. Sci. Technol., 2007, vol. 67, no. 7, pp. 1439–1450.

    Article  Google Scholar 

  16. Meram, A. and Can, A., Experimental investigation of screwed joints capabilities for the CFRP composite laminates, Composites, Part B, 2019, vol. 176, p. 107142.

    Article  CAS  Google Scholar 

  17. Zhao, T., Palardy, G., Villegas, I.F., Rans, C., and Benedictus, R., Mechanical behaviour of thermoplastic composites spot-welded and mechanically fastened joints: A preliminary comparison, Composites, Part B, 2017, vol. 112, pp. 224–234.

    Article  CAS  Google Scholar 

  18. Akrami, R., Fotouhi, S., Fotouhi, M., Bodaghi, M., and Bolouri, A., High-performance bio-inspired composite T-joints, Compos. Sci. Technol., 2019, vol. 184, p. 107840.

    Article  CAS  Google Scholar 

  19. Burns, L., Mouritz, A.P., Pook, D., and Feih, S., Bio-inspired hierarchical design of composite T-joints with improved structural properties, Composites, Part B, 2015, vol. 69, pp. 222–231.

    Article  CAS  Google Scholar 

  20. Polilov, A.N., Arutyunova, A.S., and Tatus’, N.A. Effect of stress concentration near grips on tensile strength of composites, Zavod. Lab. Diagn. Mater., 2020, vol. 86, no. 11, pp. 48–59. https://doi.org/10.26896/1028-6861-2020-86-11-48-59

    Article  CAS  Google Scholar 

  21. Gordon, J.E., Structures: Or Why Things Don’t Fall Down, Boston: Da Capo Press, 2009.

    Google Scholar 

  22. Gordon, J.E., The New Science of Strong Materials: Or Why You Don’t Fall through the Floor, rev. ed., Princeton: Princeton Univ. Press, 2018.

    Google Scholar 

  23. Malakhov, A.V. and Polilov, A.N., Construction of trajectories of the fibers which bypass a hole and their comparison with the structure of wood in the vicinity of a knot, J. Mach. Manuf. Reliab., 2013, vol. 42, no. 4, pp. 306–311.

    Article  Google Scholar 

  24. Almeida, J., Bittrich, L., and Spickenheuer, A., Improving the open-hole tension characteristics with variable-axial composite laminates: Optimization, progressive damage modeling and experimental observations, Compos. Sci. Technol., 2020, vol. 185, p. 107889.

    Article  CAS  Google Scholar 

  25. Gliesche, K., Hubner, T., and Orawetz, H., Application of the tailored fibre placement (TFP) process for a local reinforcement on an 'open-hole' tension plate from carbon/epoxy laminates, Compos. Sci. Technol., 2003, vol. 63, no. 1, pp. 81–88.

    Article  Google Scholar 

  26. Huang, J. and Haftka, R.T., Optimization of fiber orientation near a hole for increased load-carrying capacity of composite laminates, Struct. Multidisc. Opt., 2005, vol. 30, no. 5, pp. 335–341.

    Article  Google Scholar 

  27. Hou, Z., Tian, X., Zhang, J., Zhe, L., Zheng, Z., Li, D., Malakhov, A.V., and Polilov, A.N., Design and 3D printing of continuous fiber reinforced heterogeneous composites, Compos. Struct., 2020, p. 111945. https://doi.org/10.1016/j.compstruct.2020.111945

  28. Lee, J.-M., Moon, J.-S., Shim, D., and Choi, B.-H., Effect of glass fiber distributions on the mechanical and fracture behaviors of injection-molded glass fiber-filled polypropylene with 2-Hole Tension specimens, Compos. Sci. Technol., 2019, vol. 170, no. 1, pp. 190–199.

    Article  CAS  Google Scholar 

  29. Polilov, A.N., Tatus, N.A., Kamantsev, I.S., Kuznetsov, A.V., Akhmedshin, E.Kh., and Tian, X., Reducing the effect of holes on the bearing capacity of fiber-reinforced materials, AIP Conf. Proc., 2019, vol. 2176, p. 030010.

    Article  Google Scholar 

  30. Zhu, Y., Liu, J., Liu, D., Xu, H., and Hui, D., Fiber path optimization based on a family of curves in composite laminate with a center hole, Composites, Part B, 2017, vol. 111, pp. 91–102.

    Article  CAS  Google Scholar 

  31. Cho, H.R. and Rowlands, R.E., Optimizing fiber direction in perforated orthotropic media to reduce stress concentration, J. Compos. Mater., 2009, vol. 43, no. 10, pp. 1177–1198.

    Article  Google Scholar 

  32. Balla, V.M., Kate, K.H., Satyavolu, J., Singh, P., Ganesh, J., and Tadimeti, D., Additive manufacturing of natural fiber reinforced polymer composites: Processing and prospects, Composites, Part B, 2019, vol. 174, p. 106956.

    Article  CAS  Google Scholar 

  33. Dell’Anno, G., Partridge, I., Cartie, D., Hamlyn, A., Chehura, E., James, S.W., and Tatam, R.P., Automated manufacture of 3D reinforced aerospace composite structures, Int. J. Struct. Integr., 2010, vol. 3, no. 1, pp. 22–40.

    Article  Google Scholar 

  34. Dickson, A.N., Barry, J.N., McDonnell, K.A., and Dowling, D.P., Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing, Addit. Manuf., 2017, vol. 16, pp. 146–152.

    CAS  Google Scholar 

  35. Brooks, H. and Molony, S., Design and manufactured parts with three dimensional continuous fibre reinforcement, Mater. Des., 2016, vol. 90, pp. 276–283.

    Article  CAS  Google Scholar 

  36. Malakhov, A., Polilov, A., Zhang, J., Hou, Z., and Tian, X., A modeling method of continuous fiber paths for additive manufacturing (3D printing) of variable stiffness composite structures, Appl. Compos. Mater., 2020. https://doi.org/10.1007/s10443-020-09804-8

  37. Jasso, A.M., Goodsell, J.E., Ritchey, A.J., Pipes, R.B., and Koslowski, M., A parametric study of fiber volume fraction distribution on the failure initiation location in open hole off-axis tensile specimen, Compos. Sci. Technol., 2011, vol. 71, no. 16, pp. 1819–1825.

    Article  Google Scholar 

  38. Sugiyama, K., Matsuzaki, R., Malakhov, A.V., Polilov, A.N., Ueda, M., Todoroki, A., and Hirano, Y., 3D printing of optimized composites with variable fiber volume fraction and stiffness using continuous fiber, Compos. Sci. Technol., 2020, vol. 186, p. 107905.

    Article  CAS  Google Scholar 

  39. Akhmedshin, E.Kh., Polilov, A.N., and Tatus’, N.A., Holes manufacturing technology influence on the strength of fibrous composites, IOP Conf. Ser.: Mater. Sci. Eng., 2020, p. 012096. https://doi.org/10.1088/1757-899X/747/1/012096

  40. Polilov, A.N. and Tatus’, N.A., Designing equistrong shaped, branching or delaminated elastic composite members, Izv. Vyssh. Uchebn. Zaved., Mashinostr., 2018, no. 5, pp. 3–12.

  41. Polilov, A.N., Tatus’, N.A., and Tian, X., Analysis of efficiency of uniform-strength composite leaf springs under various loading conditions, J. Mach. Manuf. Reliab., 2019, vol. 48, no. 5, pp. 431–439.

    Article  Google Scholar 

  42. Polilov, A.N., Tatus’, N.A., and Tian, X., Shaped and branched analogs of triangle multi-leaf spring, Vestn. PNIPU, Mekh., 2018, no. 4, pp. 211–214.

  43. Polilov, A.N., Tatus’, N.A., and Shabalin, V.V., Peculiarities of constructing elastic elements in the form of shaped composite beams, J. Mach. Manuf. Reliab., 2011, vol. 40, no. 6, pp. 532–537.

    Article  Google Scholar 

  44. Polilov, A.N., Tatus, N.A., and Tian, X., Some features of tapered composite elements design, AIP Conf. Proc., 2018, vol. 2053, p. 020010. https://doi.org/10.1063/1.5084356

    Article  CAS  Google Scholar 

  45. Polilov, A.N., Tatus’, N., and Plitov, I.S., Estimating the effect of misorientation of fibers on stiffness and strength of profiled composite elements, J. Mach. Manuf. Reliab., 2013, vol. 42, no. 5, pp. 390–397.

    Article  Google Scholar 

  46. Tarnopol’skii, Yu.M. and Kintsis, T.Ya., Metody staticheskikh ispytaniy armirovannykh plastikov (Methods of Static Testing of Reinforced Plastics), 3rd ed., Moscow: Khimiya, 1981.

  47. Portnov, G.G., Kulakov, V.L., and Arnautov, A.K., Features of testing high-strength unidirectional composites under uniaxial tension, Plast. Massy, 2008, no. 4, pp. 40–45.

  48. Smerdov, A.A. and Tairova, L.P., Identification of strength and elastic properties of unidirectional layers of a multilayered carbon fiber reinforced plastic the features of realization for case of nanoadditives use, Konstr. Kompozits. Mater., 2015, no. 2, pp. 52–58.

  49. Babushkin, A.V., Wildeman, V.E., and Lobanov, D.S., Tensile tests of unidirectional highly filled fiberglass at normal and elevated temperatures, Zavod. Lab. Diagn. Mater., 2010, vol. 76, no. 7, pp. 57–59.

    Google Scholar 

  50. Portnov, G.G., Kulakov, V.L., and Arnautov, A.K., Grips for the transmission of tensile loads to a FRP strip, Mech. Compos. Mater., 2013, vol. 49, no. 5, p. 457.

    Article  CAS  Google Scholar 

  51. Robinson, M.J. and Adams, T.C., Performance of FRP composite lap joints utilizing fiber tow steering, Composites, Part B, 2020, vol. 190, p. 107910.

    Article  CAS  Google Scholar 

  52. Shokrieh, M.M. and Omidi, M.J., Tension behavior of unidirectional glass/epoxy composites under different strain rates, Compos. Struct., 2009, vol. 88, no. 4, pp. 595–601.

    Article  Google Scholar 

  53. Zhai, Zh., Groschel, C., and Drummer, D., Tensile behavior of quasi-unidirectional glass fiber/polypropylene composites at room and elevated temperatures, Polym. Test., 2016, vol. 54, pp. 126–133.

    Article  CAS  Google Scholar 

  54. Daniels, H.E., The statistical theory of the strength of bundles of threads, I, Proc. R. Soc. A. Math. Phys. Eng. Sci., 1945, no. 183 (995), pp. 405–435. https://doi.org/10.1098/rspa.1945.0011

  55. Zweben, C. and Rosen, B.W., A statistical theory of material strength with application to composite materials, J. Mech. Phys. Solids, 1970, vol. 18, no. 3, pp. 189–206. https://doi.org/10.1016/0022-5096(70)90023-2

    Article  Google Scholar 

  56. Lomakina, O.G., Realization of fiber strength in unidirectional composites, Mashinovedenie, 1975, no. 3, pp. 52–58.

  57. Rabotnov, Yu.N., Mekhanika tverdogo tela (Mechanics of a Solid), Moscow: Nauka, 1988.

  58. Benjeddou, O., Weibull statistical analysis and experimental investigation of size effects on tensile behavior of dry unidirectional carbon fiber sheets, Polymer Test., 2020, vol. 86, p. 106498.

    Article  CAS  Google Scholar 

  59. Czél, G., Jalalvand, M., and Wisnom, M.R., Hybrid specimens eliminating stress concentrations in tensile and compressive testing of unidirectional composites, Composites, Part A, 2016, vol. 91, no. 2, pp. 436–447.

    Article  Google Scholar 

  60. Zhavyrkin, V.V., Polilov, A.N., Arutjunova, A.S., and Tatus’ N.A., Correct FRP tensile specimen, IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 747, p. 012136. https://doi.org/10.1088/1757-899X/747/1/ 012136

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-08-00372-A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Polilov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polilov, A.N., Vlasov, D.D. & Tatus’, N.A. Development of the Optimal Shape and Reinforcement Structure of the Specimen for Adequate Determination of the Tensile Strength of Unidirectional Composites. Inorg Mater 58, 1527–1537 (2022). https://doi.org/10.1134/S0020168522150110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522150110

Navigation