Skip to main content
Log in

Laser-Ultrasonic Study of the Local Porosity of Reactive Cast Aluminum Matrix Composites

  • STRUCTURE AND PROPERTIES RESEARCH PHYSICAL METHODS FOR INVESTIGATION AND MONITORING
  • Published:
Inorganic Materials Aims and scope

Abstract

One of the most critical manufacturing defects of cast metal-matrix composites is a nonuniform porosity distribution over the composite volume. This nonuniformity not only leads to local softening, but also plays a key role in the evolution of the damage process under external loads. In this work, we present the results of the study of a local porosity in disperse-strengthened reactive cast aluminum matrix composites. The studies were performed using a laser-ultrasonic method based on statistical analysis of the amplitude distribution of backscattered broadband pulses of longitudinal ultrasonic waves in composites. Laser excitation and piezoelectric detection of ultrasound were performed using a laser-ultrasonic transducer. Two series of reactive cast aluminum matrix composites were analyzed: reinforced by in situ synthesized Al3Ti intermetallic particles in different volume concentrations and by Al3Ti particles with the addition of synthetic diamond nanoparticles. It has been found that, for both series of composites, the amplitude distribution of backscattered ultrasonic pulses is approximated by a Gaussian probability distribution applicable for statistics of a large number of independent random variables. The empirical dependence of the half-width of this distribution on the local porosity in composites is approximated by the same nearly linear function regardless of the size and concentration of reinforcing particles. This function was used to derive the calculating formula for determining the local porosity in the studied materials. The obtained results can be used to reveal potentially dangerous domains with a higher porosity in reactive cast metal matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Clyne, T.W. and Withers, P.J., An Introduction to Metal Matrix Composites, Cambridge: Cambridge Univ. Press, 1995.

    Google Scholar 

  2. Mileiko, S.T., Metal and Ceramic Based Composites, Amsterdam: Elsevier, 1997.

    Google Scholar 

  3. Chernyshova, T.A., Kurganova, Yu.A., Kobeleva, L.I., and Bolotova, L.K., Litye dispersno-uprochnennye alyumomatrichnye kompozitsionnye materialy: kharakteristiki, svoistva, primenenie (Cast Particulate-Reinforced Aluminum-Matrix Composites: Manufacturing, Properties, Application), Ulyanovsk: UlGTU, 2012.

  4. Ibrahim, I.A., Mohamed, F.A., and Lavernia, E.J., Particulate reinforced metal matrix composites a review, J. Mater. Sci., 1991, vol. 26, pp. 1137–1156. https://doi.org/10.1007/BF00544448

    Article  CAS  Google Scholar 

  5. Lloyd, D.J., Particle reinforced aluminium and magnesium matrix composites, Int. Mater. Rev., 1994, vol. 39, pp. 1–23. https://doi.org/10.1179/imr.1994.39.1.1

    Article  CAS  Google Scholar 

  6. Kainer K.U., Basics of metal matrix composites, in Metal Matrix Composites: Custom-Made Materials for Automotive and Aerospace Engineering, Kainer, K.U., Ed., Weinheim: Wiley-VCH, 2006, pp. 1–54.

    Book  Google Scholar 

  7. Chernyshova, T.A., Mikheev, R.S., Kalashnikov, I.E., Akimov, I.V., and Kharlamov, E.I., Development and approbation of Al-SiC and Al-TiC composites in friction units of oil-production equipment, Fiz. Khim. Obrab. Mater., 2010, no. 5, pp. 78–86.

  8. Miranda, G., Buciumeanu, M., Madeira, S., Carvalho, O., Soares, D., and Silva, F., Hybrid composites metallic and ceramic reinforcements influence on mechanical and wear behavior, Composites, Part B, 2015, vol. 74, P. 153–165. https://doi.org/10.1016/j.compositesb.2015.01.007

    Article  CAS  Google Scholar 

  9. Bolotova, L.K., Kalashnikov, I.E., Kobeleva, L.I., Bykov, P.A., Katin, I.V., Kolmakov, A.G., and Podymova, N.B., Structure and properties of composite materials based on babbit B83 alloy obtained by extrusion, Fiz. Khim. Obrab. Mater., 2017, no. 2, pp. 63–70.

  10. Kolmakov, A.G., Kalashnikov, I.E., Bolotova, L.K., Podymova, N.B., Bykov, P.A., Katin, I.V., and Kobeleva, L.I., Study of characteristics of composite materials based on B83 antifriction alloy, Inorg. Mater., 2020, vol. 56, no. 15, pp. 1499–1505. https://doi.org/10.1134/S002016852015008X

  11. Tjong, S.C. and Ma, Z.Y., Microstructural and mechanical characteristics of in situ metal matrix composites, Mater. Sci. Eng. R, 2000, vol. 29, pp. 49–113. https://doi.org/10.1016/S0927-796X(00)00024-3

    Article  Google Scholar 

  12. Varin, R.A., Intermetallic-reinforced light-metal matrix in situ composites, Metall. Mater. Trans. A, 2002, vol. 33, pp. 193–201. https://doi.org/10.1007/s11661-002-0018-4

    Article  Google Scholar 

  13. Wang, X., Jha, A., and Brydson, R., In situ fabrication of Al3Ti particle reinforced aluminium alloy metal-matrix composites, Mater. Sci. Eng. A, 2004, vol. 364, P. 339–345. https://doi.org/10.1016/j.msea.2003.08.049

    Article  CAS  Google Scholar 

  14. Chernyshova, T.A., Bolotova, L.K., Kalashnikov, I.E., Kobeleva, L.I., and Bykov, P.A., Effect of refractory nanoparticles on the structural modification of metal-matrix composites, Russ. Metall. (Metally), 2007, no. 3, pp. 236–241. https://doi.org/10.1134/S0036029507030123

  15. Murasheva, V.V., Burkovskaya, N.P., and Sevostyanov, N.V., Manufacturing techniques of high-temperature Nb-Si in situ composites (a review), Konstr. Kompos. Mater., 2015, no. 2, pp. 27–38.

  16. Gangil, N., Siddiquee, A.N., and Maheshwari, S., Aluminium based in situ composite fabrication through friction stir processing: A review, J. Alloys Compd., 2017, vol. 715, pp. 91–104. https://doi.org/10.1016/j.jallcom.2017.04.309

    Article  CAS  Google Scholar 

  17. Campbell, J., Porosity, in Complete Casting Handbook. Metal Casting Processes, Metallurgy, Techniques and Design, Amsterdam: Butterworth-Heinemann, Elsevier, 2015, pp. 341–415.

    Google Scholar 

  18. Rohatgi, P., Alaraj, S., Thakkar, R., and Daoud, A., Variation in fatigue properties of cast A359-SiC composites under total strain controlled conditions: Effects of porosity and inclusions, Composites, Part A, 2007, vol. 38, no, 8, pp. 1829–1841. https://doi.org/10.1016/j.compositesa.2007.04.005

    Article  CAS  Google Scholar 

  19. Pineau, A., Benzerga, A., and Pardoen, T., Failure of metals I: Brittle and ductile fracture, Acta Mater., 2016, vol. 107, pp. 424–483. https://doi.org/10.1016/j.actamat.2015.12.034

    Article  CAS  Google Scholar 

  20. Vary, A., Material property characterization, in Nondestructive Testing Handbook. Ultrasonic Testing, Moore, P.O., Ed., Columbus: ASTM, 2007, pp. 365–431.

    Google Scholar 

  21. Mujica, N., Cerda, M., Espinoza, R., Lisoni, J., and Lund, F., Ultrasound as a probe of dislocation density in aluminum, Acta Mater., 2012, vol. 60, pp. 5828–5837. doi . 2012.07.023https://doi.org/10.1016/j.actamat

  22. Lan, B., Britton, T., Jun, T., Gan, W., Hofmann, M., Dunne, F., and Lowe, M., Direct volumetric measurement of crystallographic texture using acoustic waves, Acta Mater., 2018, vol. 159, pp. 384–394. https://doi.org/10.1016/j.actamat.2012.07.023

    Article  CAS  Google Scholar 

  23. Mishakin, V.V. and Klyushnikov, V.A., Study of a welded joint of 12Kh18N10T steel using acoustic and magnetic methods, Inorg. Mater., 2018, vol. 54, no. 15, pp. 1498–1502. https://doi.org/10.1134/S0020168518150153

    Article  CAS  Google Scholar 

  24. Mishakin, V.V., Serebryany, V.N., Gonchar, A.V., and Klyushnikov, V.A., Acoustic measurement of the texture characteristics of 15YuTA construction steel under fatigue failure, Inorg. Mater., 2019, vol. 55, no. 15, pp. 1454–1457. https://doi.org/10.1134/S0020168519150111

    Article  CAS  Google Scholar 

  25. Fitting, D. and Adler, L., Ultrasonic Spectral Analysis for Nondestructive Evaluation, New York: Plenum, 1981.

    Book  Google Scholar 

  26. Gusev, V.E. and Karabutov, A.A., Laser Optoacoustics, New York: AIP Press, 1993.

    Google Scholar 

  27. Sundin, S. and Artymowicz, D., Direct measurements of grain size in low-carbon steels using the laser ultrasonic technique, Metall. Mater. Trans. A, 2002, vol. 33, pp. 687–691. https://doi.org/10.1007/s11661-002-0131-4

    Article  Google Scholar 

  28. Ivochkin, A., Karabutov, A., Lyamshev, M., Pelivanov, I., Rohatgi, U., and Subudhi, M., Measurement of velocity distribution for longitudinal acoustic waves in welds by a laser optoacoustic technique, Acoust. Phys., 2007, vol. 53, no. 4, pp. 471–477. https://doi.org/10.1134/S1063771007040070

    Article  CAS  Google Scholar 

  29. Sarkar, S., Moreau, A., Militzer, M., and Poole, W., Evolution of austenite recrystallization and grain growth using laser ultrasonics, Metall. Mater. Trans. A, 2008, vol. 39, pp. 897–907. https://doi.org/10.1007/s11661-007-9461-6

    Article  CAS  Google Scholar 

  30. Kozhushko, V., Paltauf, G., and Krenn, H., Detection of nanosecond optoacoustic pulses in steel, Acoust. Phys., 2013, vol. 59, no. 2, pp. 250–252. https://doi.org/10.1134/S1063771013020085

    Article  Google Scholar 

  31. Podymova, N.B., Kalashnikov, I.E., Bolotova, L.K., and Kobeleva, L.I., Laser-ultrasonic nondestructive evaluation of porosity in particulate reinforced metal-matrix composites, Ultrasonics, 2019, vol. 99, p. 105959. https://doi.org/10.1016/j.ultras.2019.105959

  32. Karabutov, A.A. and Podymova, N.B., Nondestructive porosity assessment of CFRP composites with spectral analysis of backscattered laser-induced ultrasonic pulses, J. Nondestruct. Eval., 2013, vol. 32, pp. 315–324. https://doi.org/10.1007/s10921-013-0184-x

    Article  Google Scholar 

  33. Adler, L., Rose, J., and Mobley, C., Ultrasonic method to determine gas porosity in aluminum alloy castings: Theory and experiment, J. Appl. Phys., 1986, vol. 59, pp. 336–0347. https://doi.org/10.1063/1.336689

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the state task, contract no. 075-00746-19-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Podymova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podymova, N.B., Kalashnikov, I.E. & Kobeleva, L.I. Laser-Ultrasonic Study of the Local Porosity of Reactive Cast Aluminum Matrix Composites. Inorg Mater 58, 1512–1519 (2022). https://doi.org/10.1134/S0020168522150109

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522150109

Keywords:

Navigation