Skip to main content
Log in

Nanoscale Materials in the Composition of Biosensors for the Determination of Amitriptyline

  • SUBSTANCES ANALYSIS
  • Published:
Inorganic Materials Aims and scope

Abstract

Biosensor devices that include hybrid nanostructures as transducer surface modifiers meet current requirements for methods of research and determination of drugs, including antidepressants. Here, we consider the features of amperometric monoamine oxidase biosensors based on screen-printed graphite electrodes modified with nanocomposite consisting of C60/cobalt nanoparticles/amino derivative of a second-generation polyether polyol/chitosan in the determination of the tricyclic antidepressant amitriptyline. The best modifier was selected using transmission electron microscopy, scanning electron microscopy, electrochemical impedance spectroscopy, and differential pulse voltammetry. In the biosensor development, the conditions for applying the composite based on cobalt nanoparticles/amino derivative of polyether polyol to the electrode surface were varied: electrochemical deposition, sequential deposition by the layer-on-layer method, and deposition of a mixture. As an analytical signal of the biosensor, we used the peak of the electrochemical oxidation of hydrogen peroxide, which is formed during the enzymatic oxidation of serotonin under the action of monoamine oxidase. The operating principle of the biosensor is based on the inhibitory effect of amitriptyline on the catalytic activity of immobilized monoamine oxidase. For the selected modifier, the determined concentration range of amitriptyline is 1 × 10–4–1 × 10–8 mol/L and the lower limit of the determined contents is 5 × 10–9 mol/L under optimal operating conditions. Comparison of the results of the amitriptyline determination in a pharmaceutical preparation and urine that were obtained using a monoamine oxidase biosensor and the method of fluorescence polarization immunoassay (dilution of the tracer of 1 : 32, dilution of antibodies of 1 : 128, range of working concentrations from 5 × 10–8 to 5 × 10–9 mol/L), which has proven itself in the determination of medicinal substances, confirmed the correctness of the developed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Medyantseva, E.P., Brusnitsyn, D.V., Varlamova, R.M., et al., Determination of antidepressants using monoamine oxidase amperometric biosensors based on screen-printed graphite electrodes modified with multi-walled carbon nanotubes, Pharm. Chem. J., 2014, vol. 48, no. 7, pp. 478–482. https://doi.org/10.1007/s11094-014-1135-2

    Article  CAS  Google Scholar 

  2. Medyantseva, E.P., Brusnitsyn, D.V., Varlamova, R.M., et al., Hyperbranched polyesterpolyols as components of amperometric monoamine oxidase biosensors based on electrodes modified with nanomaterials for determination of antidepressants, Russ. J. Appl. Chem., 2017, vol. 90, no. 1, pp. 97–105. https://doi.org/10.1134/S1070427217010153

    Article  CAS  Google Scholar 

  3. Medyantseva, E.P., Brusnitsyn, D.V., Varlamova, R.M., et al., Monoamine oxidase biosensors based on silver nanoparticles and graphene oxide for the antidepressants determination, Butler. Soobshch., 2015, vol. 41, no. 3, pp. 36–43.

    Google Scholar 

  4. Zumpano, R., Polli, F., D’Agostino, C., et al., Nanostructure-based electrochemical immunosensors as diagnostic tools, Electrochemistry, 2021, vol. 2, no. 1, pp. 10–28. https://doi.org/10.3390/electrochem2010002

    Article  CAS  Google Scholar 

  5. Bastos-Soares, E.A., Sousa, R.M.O., Gómez, A.F., et al., Single domain antibodies in the development of immunosensors for diagnostics, Int. J. Biol. Macromol., 2020, vol. 165, pp. 2244–2252. https://doi.org/10.1016/j.ijbiomac.2020.10.031

    Article  CAS  PubMed  Google Scholar 

  6. Chen, P., Hua, X., Liu, J., et al., A dual amplification electrochemical immunosensor based on HRP-Au@AgNPs for carcinoembryonic antigen detection, Anal. Biochem., 2019, vol. 574, pp. 23–30. https://doi.org/10.1016/j.ab.2019.03.003

    Article  CAS  PubMed  Google Scholar 

  7. Zhang, Z., Yang, M., Wu, X., et al., A competitive immunosensor for ultrasensitive detection of sulphonamides from environmental waters using silver nanoparticles decorated single-walled carbon nanohorns as labels, Chemosphere, 2019, vol. 225, pp. 282–287. https://doi.org/10.1016/j.chemosphere.2019.03.033

    Article  CAS  PubMed  Google Scholar 

  8. Rafipour, R., Kashanian, S., Hashemi, S., et al., An electrochemical biosensor based on cobalt nanoparticles synthesized in iron storage protein molecules to determine ascorbic acid, Biotechnol. Appl. Biochem., 2016, vol. 63, no. 5, pp. 740–745. https://doi.org/10.1002/bab.1410

    Article  CAS  PubMed  Google Scholar 

  9. Ali, A., Qadir, M.I., Wazir, Z., et al., Cobalt oxide magnetic nanoparticles-chitosan nanocomposite based electrochemical urea biosensor, Indian J. Phys., 2015, vol. 89, pp. 331–336. https://doi.org/10.1007/s12648-014-0594-3

    Article  CAS  Google Scholar 

  10. Srinivasan, S.Y., Paknikar, K.M., Bodas, D., and Gajbh, V., Applications of cobalt ferrite nanoparticles in biomedical nanotechnology, Nanomedicine, 2018, vol. 13, no. 10, pp. 1221–1238. https://doi.org/10.2217/nnm-2017-0379

    Article  CAS  PubMed  Google Scholar 

  11. Murthy, S.K., Nanoparticles in modern medicine: State of the art and future challenges, Int. J. Nanomed., 2007, vol. 2, no. 2, pp. 129–141.

    CAS  Google Scholar 

  12. Raysyan, A., Moerer, R., Coesfeld, B., et al., Fluorescence polarization immunoassay for the determination of diclofenac in wastewater, Anal. Bioanal. Chem., 2021, vol. 413, no. 4, pp. 999–1007. https://doi.org/10.1007/s00216-020-03058-w

    Article  CAS  PubMed  Google Scholar 

  13. Eremin, S.A., Khan, O.Yu., Pisarev, V.V., et al., Fluorescence polarization immunoassay, for express control of antibiotic levels: Design and characteristics for chloramphenicol, as an example, Antibiot. Khimioter., 2016, vol. 61, nos. 9–10, pp. 39–43.

    Google Scholar 

  14. Li, C., Zhang, Y., Eremin, S.A., et al., Detection of kanamycin and gentamicin residues in animal-derived food using IgY antibody based ic-ELISA and FPIA, Food Chem., 2017, vol. 227, pp. 48–54. https://doi.org/10.1016/j.foodchem.2017.01.058

    Article  CAS  PubMed  Google Scholar 

  15. Beloglazova, N.V., Shmelin, P.S., and Eremin, S.A., Sensitive immunochemical approaches for quantitative (FPIA) and qualitative (lateral flow tests) determination of gentamicinin milk, Talanta, 2016, vol. 149, pp. 217–224. https://doi.org/10.1016/j.talanta.2015.11.060

    Article  CAS  PubMed  Google Scholar 

  16. Zvereva, E.A., Zherdev, A.V., Formanovsky, A.A., et al., Fluorescence polarization immunoassay of colchicine, J. Pharm. Biomed. Anal., 2018, vol. 159, pp. 326–330. https://doi.org/10.1016/j.jpba.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  17. Medvedeva, O.I., Kambulova, S.S., Rossova, A.A., et al., Hybrid materials based on magnetic cobalt nanoparticles and hyperbranched polymers, in Proceedings of the International Conference on Functional Monomers and Polymer Materials with Special Properties: Problems, Prospects and Practical Views, Sumgait, Azerbajan: SGU, 2017, p. 224.

  18. Adamczyk, M., Fishpaugh, J., Harrington, C., et al., Immunoassay reagents for psychoactive drugs: 1. The method for the development of antibodies specific to amitriptyline and nortriptyline, J. Immunol. Methods, 1993, vol. 162, no. 1, pp. 47–58. https://doi.org/10.1016/0022-1759(93)90406-W

    Article  CAS  PubMed  Google Scholar 

  19. Kutyreva, M.P., Gataulina, A.R., Kutyrev, G.A., et al., Polynuclear copper (II) complexes with polydentate nanoligands on the basis of aminoderivatives of the hyperbranched polyesters, Russ. J. Gen. Chem., 2011, vol. 81, no. 7, pp. 1535–1538. https://doi.org/10.1134/S1070363211070206

    Article  CAS  Google Scholar 

  20. Youdim, M.B.H., Edmondson, D., and Tipton, K.F., The therapeutic potential of monoamine oxidase inhibitors, Nat. Rev. Neurosci., 2006, vol. 7, no. 4, pp. 295–309. https://doi.org/10.1038/nrn1883

    Article  CAS  PubMed  Google Scholar 

  21. Medyantseva, E.P., Brusnitsyn, D.V., Varlamova, R.M., et al., Surface modification of electrodes by carbon nanotubes and gold and silver nanoparticles in monoaminoxidase biosensors for the determination of some antidepressants, J. Anal. Chem., 2017, vol. 72, no. 4, pp. 362–370. https://doi.org/10.1134/S1061934817040086

    Article  CAS  Google Scholar 

  22. Medyantseva, E.P., Brusnitsyn, D.V., Varlamova, R.M., et al., Effect of nanostructured materials as electrode surface modifiers on the analytical capacity of amperometric biosensors, Russ. J. Appl. Chem., 2015, vol. 88, no. 1, pp. 40–49. https://doi.org/10.1134/S1070427215010073

    Article  CAS  Google Scholar 

  23. Medyantseva, E.P., Brusnitsyn, D.V., Varlamova, R.M., et al., Monoamine oxidase amperometric biosensor based on graphite electrodes and graphene oxide as a surface modifier for the determination of some antidepressants, Anal. Kontrol’, 2014, vol. 18, no. 4, pp. 442–450. https://doi.org/10.15826/analitika.2014.18.4.011

    Article  Google Scholar 

  24. Medyantseva, E.P., Brusnitsyn, D.V., Varlamova, R.M., et al., Nanostructured composites based on graphene and nanoparticles of cobalt in the composition of monoamine oxidase biosensors for determination of antidepressants, Zavod. Lab. Diagn. Mater., 2018, vol. 84, no. 8, pp. 5–14. https://doi.org/10.26896/1028-6861-2018-84-8-5-14

    Article  CAS  Google Scholar 

  25. Săndulescu, R., Tertis, M., Cristea, C., and Bodoki, E., New materials for the construction of electrochemical biosensors, in Biosensors - Micro and Nanoscale Applications, Rijeka: IntechOpen, 2015, Chap. 1, pp. 1–36. https://doi.org/10.5772/60510

    Book  Google Scholar 

  26. Berezov, T.T. and Korovkin, B.F., Biologicheskaya khimiya (Biological Chemistry), Moscow: Meditsina, 1998.

  27. Shaidarova, L.G., Chelnokova, I.A., Romanova, E.I., et al., Joint voltammetric determination of dopamine and uric acid at an electrode modified with self-assembled monolayer of cystamine with gold nanoparticles, Russ. J. Appl. Chem., 2011, vol. 84, no. 2, pp. 218–224. https://doi.org/10.1134/S1070427211020091

    Article  CAS  Google Scholar 

  28. Medyantseva, E.P., Brusnitsyn, D.V., Varlamova, R.M., et al., Capabilities of amperometric monoamine oxidase biosensors based on screen-printed graphite electrodes modified with multiwall carbon nanotubes in the determination of some antidepressants, J. Anal. Chem., 2017, vol. 70, no. 5, pp. 535–539. https://doi.org/10.1134/S106193481505010X

    Article  CAS  Google Scholar 

  29. Chen, Y., He, Q., Shen, D., et al., Fluorescence polarization immunoassay based on a new monoclonal antibody for the detection of the Diisobutyl phthalate in Yoghurt, Food Control, 2019, vol. 105, pp. 38–44. https://doi.org/10.1016/j.foodcont.2018.11.052

    Article  CAS  Google Scholar 

  30. Zhang, H., Yang, S., Ruyck, K.D., et al., Fluorescence polarization assays for chemical contaminants in food and environmental analyses, Trends Anal. Chem., 2019, vol. 114, pp. 293–313. https://doi.org/10.1016/j.trac.2019.03.013

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Medyantseva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Ivanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medyantseva, E.P., Brusnitsyn, D.V., Gazizullina, E.R. et al. Nanoscale Materials in the Composition of Biosensors for the Determination of Amitriptyline. Inorg Mater 58, 1444–1452 (2022). https://doi.org/10.1134/S0020168522140102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522140102

Keywords:

Navigation