Skip to main content
Log in

Determination of Chemical and Microbiological Characteristics of Meat Products Treated by Radiation

  • SUBSTANCES ANALYSIS
  • Published:
Inorganic Materials Aims and scope

Abstract

Radiation treatment of food products carried out to increase their shelf life can result in chemical transformations initiated by free radicals. Volatile compounds (alcohols, aldehydes, ketones, etc.) formed, in particular, as a result of lipid oxidation, impair the organoleptic properties of products. Method of gas chromatography-mass spectrometry (GC-MS) makes it possible to identify the fact of food processing by detection of volatile marker compounds: in the case of meat products, the existing standard brings under regulation detection of 2-alkylcyclobutanones, however, the products with a reduced fat content, such as turkey and chicken, require an alternative marker. The results of GC-MS study revealed the dependence of microbiological parameters and the content of various volatile organic substances in chilled turkey meat on the dose of electron radiation. It is shown that the total amount of alcohols, ketones and aldehydes (11 compounds) decreases exponentially with an increase in the absorbed dose. An increase in the radiation dose leads to a higher content of carbonyl compounds (aldehydes and acetone), which results in a specific taste and smell of the irradiated products. At the same time, the acetone concentration increases linearly with the absorbed dose, which makes it possible to use acetone as a potential marker of the degree of irradiation of low-fat meat products. Irradiation in the “working” doses (0.5–1 kGy) significantly suppresses the pathogenic microflora and keeps the organoleptic properties of the product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Codex Alimentarius. Irradiated Food, Joint FAO/WHO Food Standards Program, Moscow: Ves’ Mir, 2007.

  2. Alimov, A.S., Practical application of electron accelerators, Preprint SINP MGU, Moscow: Mosk. Gos. Univ., 2011, no. 2011-13/877.

  3. Statement summarizing the conclusions and recommendations from the opinions on the safety of irradiation of food adopted by the BIOHAZ and CEF panels, EFSA J., 2011, vol. 9, no. 4, p. 2107. https://doi.org/10.2903/j.efsa.2011.2107

  4. Codex Alimentarius Commission, General Standard for Irradiated Foods, CODEX STAN 106-1983, Rev. 1‑2003, Rome: Codex Alimentarius, FAO/WHO, 2003.

  5. Chernyaev, A.P., Varzar’, S.M., Belousov, A.V., et al., Prospects of development of radiation technologies in Russia, Phys. At. Nucl., 2019, vol. 82, no. 5, pp. 513–527. https://doi.org/10.1134/S1063778819040070

    Article  CAS  Google Scholar 

  6. Chmielewski, A.G. and Migdał, W., Radiation decontamination of herbs and spices, Nukleonika, 2005, vol. 50, no. 4, pp. 179–184.

    CAS  Google Scholar 

  7. Sadecka, J., Irradiation of spices—a review, Czech. J. Food Sci., 2018, vol. 25, no. 5, pp. 231–242. https://doi.org/10.17221/684-CJFS

    Article  Google Scholar 

  8. Chernyaev, A.P., Avdyukhina, V.M., Bliznyuk, U.A., et al., Study of the effectiveness of treating trout with electron beam and X-ray radiation, Bull. Russ. Acad. Sci.: Phys., 2020, vol. 84, no. 4, pp. 385–390. https://doi.org/10.3103/S106287382004005X

    Article  CAS  Google Scholar 

  9. Badr, H.M., Use of irradiation to control food-borne pathogens and extend the refrigerated market life of rabbit meat, Meat Sci., 2004, vol. 67, no. 4, pp. 541–548. https://doi.org/10.1016/j.meatsci.2003.11.018

    Article  PubMed  Google Scholar 

  10. Jayathilakan, K., Sultana, K., and Pandey, M.C., Radiation processing: An emerging preservation technique for meat and meat products, Defence Life Sci. J., 2017, vol. 2, no. 2, pp. 133–141. https://doi.org/10.14429/dlsj.2.11368

    Article  Google Scholar 

  11. Gorbunova, N.A., Prospects for using the technology of ionizing radiation of meat and meat products, Myas. Industr., 2016, no. 9, pp. 21–23.

  12. Aleksieva, K. and Yordanov, N.D., Various approaches in EPR identification of gamma-irradiated plant foodstuffs: A review, Food Res. Int., 2018, vol. 105, pp. 1019–1028. https://doi.org/10.1016/j.foodres.2017.11.072

    Article  CAS  PubMed  Google Scholar 

  13. Timakova, R.T., Tikhonov, S.L., Tararkov, A.N., and Vakhnin, D.O., EPR spectroscopy of spices, Vestn. VGUIT, 2016, no. 4, pp. 187–193. https://doi.org/10.20914/2310-1202-2016-4-187-193.

  14. Kameya, H., Todoriki, S., Ukai, M., et al., Relaxation behaviors of free radicals from γ-irradiated black pepper using pulsed EPR spectroscopy, Appl. Magn. Reson., 2012, vol. 42, no. 2, pp. 153–159. https://doi.org/10.1007/s00723-011-0305-6

    Article  CAS  Google Scholar 

  15. Polovka, M., Brezová, V., and Šimko, P., EPR spectroscopy: A tool to characterize gamma-irradiated foods, J. Food Nutr. Res., 2007, vol. 46, no. 2, pp. 75–83.

    CAS  Google Scholar 

  16. Drouza, C., Spanou, S., and Keramidas, A.D., EPR methods applied on food analysis, in Topics from EPR Research, Maghraby, A.M., Ed., Rijeka: IntechOpen, 2018. https://doi.org/10.5772/intechopen.79844

    Book  Google Scholar 

  17. Chauhan, S.K., Kumar, R., Nadanasabapathy, S., and Bawa, A.S., Detection methods for irradiated foods, Compr. Rev. Food Sci. Food Saf., 2009, vol. 8, pp. 4–16. https://doi.org/10.1111/j.1541-4337.2008.00063.x

    Article  CAS  Google Scholar 

  18. Podkopaev, D.O., Method of EPR-spectrometry for research of biological objects and a foodstuff, Pishch. Prom-st’., 2010, no. 7, pp. 33–34.

  19. Sudheesh, C., Sunooj, K., George, J., et al., Impact of γ-irradiation on the physico-chemical, rheological properties and in vitro digestibility of kithul (Caryota urens) starch; A new source of nonconventional stem starch, Radiat. Phys. Chem., 2019, vol. 162, pp. 54–65. https://doi.org/10.1016/j.radphyschem.2019.04.031

    Article  CAS  Google Scholar 

  20. Kavitake, D., Techi, M., Abid, U.K., et al., Effect of γ‑irradiation on physico-chemical and antioxidant properties of galactan exopolysaccharide from Weissella confusa KR780676, J. Food Sci. Technol., 2019, vol. 56, no. 4, pp. 1766–1774. https://doi.org/10.1007/s13197-019-03608-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nisar, M.F., Arshad, M.S., Yasin, M., et al., Influence of irradiation and moringa leaf powder on the amino acid and fatty acid profiles of chicken meat stored under various packaging materials, J. Food Process. Preserv., 2019, vol. 43, no. 1, p. e14166. https://doi.org/10.1111/jfpp.14166

    Article  CAS  Google Scholar 

  22. Bhoir, S., Jhaveri, M., and Chawla, S.P., Evaluation and predictive modeling of the effect of chitosan and gamma irradiation on quality of stored chilled chicken meat, J. Food Process Eng., 2019, vol. 42, no. 6, p. e13254. https://doi.org/10.1111/jfpe.13254

    Article  Google Scholar 

  23. Arshad, M.S., Amjad, Z., Yasin, M., et al., Quality and stability evaluation of chicken meat treated with gamma irradiation and turmeric powder, Int. J. Food Prop., 2019, vol. 22, no. 1, pp. 153–171. https://doi.org/10.1080/10942912.2019.1575395

    Article  CAS  Google Scholar 

  24. Nam, H.-A., Ramakrishnan, S.R., and Kwon, J.-H., Effects of electron-beam irradiation on the quality characteristics of mandarin oranges (Citrus unshiu (Swingle) Marcov) during storage, Food Chem., 2019, vol. 286, pp. 338–345. https://doi.org/10.1016/j.foodchem.2019.02.009

    Article  CAS  PubMed  Google Scholar 

  25. Ross, C.F. and Smith, D.M., Use of volatiles as indicators of lipid oxidation in muscle foods, Comp. Rev. Food Sci. Food Saf., 2006, vol. 5, pp. 18–25. https://doi.org/10.1111/j.1541-4337.2006.tb00077.x

    Article  CAS  Google Scholar 

  26. Vaghela, K.D., Chaudhary, B.N., Mehta, B.M., et al., Comparative appraisal of Kreis methods for the assessment of incipient rancidity in ghee, Br. Food J., 2018, vol. 120, no. 1, pp. 240–250. https://doi.org/10.1108/BFJ-04-2017-0235

    Article  Google Scholar 

  27. Zeb, A. and Ullah, F., A simple spectrophotometric method for the determination of thiobarbituric acid reactive substances (TBARS) in fried fast foods, J. Anal. Methods Chem., 2016, no. 1, p. 9412767. https://doi.org/10.1155/2016/9412767

  28. Gladilovich, V.D. and Podol’skaya, E.P., Possibilities of application of the GC-MS method (review), Nauch. Priborostr., 2010, vol. 20, no. 4, pp. 36–49.

    CAS  Google Scholar 

  29. Gaspar, E.M., Santana, J.C., Santos, P.M., et al., Gamma irradiation of clove: Level of trapped radicals and effects on bioactive composition, J. Sci. Food Agric., 2019, vol. 99, no. 4, pp. 1668–1674. https://doi.org/10.1002/jsfa.9351

    Article  CAS  PubMed  Google Scholar 

  30. Chiappinelli, A., Mangiacotti, M., Tomaiuolo, M., et al., Identification of X-ray-irradiated hazelnuts by Electron Spin Resonance (ESR) spectroscopy, Eur. Food Res. Technol., 2019, vol. 245, pp. 2323–2329. https://doi.org/10.1007/s00217-019-03349-2

    Article  CAS  Google Scholar 

  31. Tomaiuolo, M., Mangiacotti, M., Trotta, G., et al., Identification of X-ray irradiated walnuts by ESR spectroscopy, Radiat. Phys. Chem., 2018, vol. 150, pp. 35–39. https://doi.org/10.1016/j.radphyschem.2018.04.007

  32. Alberti, A., Chiaravalle, E., Fuochi, P., et al., Irradiated bivalve mollusks: Use of EPR spectroscopy for identification and dosimetry, Radiat. Phys. Chem., 2011, vol. 80, no. 12, pp. 1363–1370. https://doi.org/10.1016/j.radphyschem.2011.08.002

    Article  CAS  Google Scholar 

  33. Bercu, V., Negut, C.D., and Duliu, O.G., Irradiation free radicals in freshwater crayfish Astacus leptodactylus Esch investigated by EPR spectroscopy, Radiat. Phys. Chem., 2017, vol. 133, pp. 45–51. https://doi.org/10.1016/j.radphyschem.2016.12.008

    Article  CAS  Google Scholar 

  34. Song, B.-S., Kim, B.-K., Yoon, Y.-M., et al., Identification of red pepper powder irradiated with different types of radiation using luminescence methods: A comparative study, Food Chem., 2016, vol. 200, pp. 293–300. https://doi.org/10.1016/j.foodchem.2016.01.050

    Article  CAS  PubMed  Google Scholar 

  35. Chernyaev, A.P., Bliznyuk, U.A., Borshchegovskaya, P.Yu., et al., 1 MeV electron irradiation of chilled trout to control its microbiological parameters, Yad. Fiz. Inzhen., 2018, vol. 9, no. 1, pp. 89–93. https://doi.org/10.1134/S2079562917060069

    Article  Google Scholar 

  36. Chernyaev, A.P., Avdyukhina, V.M., Bliznyuk, U.A., et al., Using low-energy electron beams for processing chilled turkey meat. Optimization of exposure parameters, Naukoem. Tekhnol., 2020, vol. 21, no. 1, pp. 40–49. https://doi.org/10.18127/j19998465-202001-07

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The researchers involved in this study express their gratitude to the Federal State Budgetary Scientific Institution VILAR for the fruitful cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. A. Bliznyuk.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bliznyuk, U.A., Avdyukhina, V.M., Borshchegovskaya, P.Y. et al. Determination of Chemical and Microbiological Characteristics of Meat Products Treated by Radiation. Inorg Mater 58, 1422–1428 (2022). https://doi.org/10.1134/S0020168522140047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522140047

Keywords:

Navigation