Skip to main content
Log in

Approaches to Increasing the Current-Carrying Characteristics in Second-Generation HTSC Tapes

  • Published:
Inorganic Materials Aims and scope

Abstract

Recently, the number of projects has grown connected with the application of high-temperature superconductors (HTSC) with exceptionally high current-carrying characteristics in strong magnetic fields. However, the thickness of the RBa2Cu3O7–x (R = REE, Y) superconducting layer is only 1–2% of the thickness of HTSC tape. Increasing the current-carrying characteristics owing to the thickness of the conducting layer is a promising approach. The fundamental problem of crystallite formation of a-oriented crystallites prevents the development of this approach. Such crystallites do not carry superconducting current along the substrate tape and interfere with the growth of c-oriented crystallites. This review presents existing methods of suppression of a-oriented growth, the basis of the creation of HTSC materials, and prospects of obtaining HTSC materials with high current-carrying characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.
Fig. 40.
Fig. 41.
Fig. 42.
Fig. 43.
Fig. 44.
Fig. 45.
Fig. 46.
Fig. 47.
Fig. 48.
Fig. 49.
Fig. 50.
Fig. 51.
Fig. 52.
Fig. 53.

Notes

  1. The terms “autonomous” and “nonautonomous” phases and states were introduced by J. Gibbs.

REFERENCES

  1. Antipov, E.V., Lykova, L.N., and Kovba, L.M., Crystal chemistry of superconducting oxides, Zh. Vseross. Khim. Ob-va, 1989, vol. 34, pp. 458–467.

    CAS  Google Scholar 

  2. Frank-Kamenetskaya, O.V., Kaminskaya, T.N., Nardov, A.V., and Ivanova, T.I., Crystal structures of HTSC, in Vysokotemperaturnaya sverkhprovodimost': fundamental’nye i prikladnye issledovaniya (High-Temperature Superconductivity: Fundamental and Applied Research), Leningrad: 1990, pp. 190–265.

  3. Abakumov, A.M., Antipov, E.V., Kovba, L.M., Kopnin, E.M., Putilin, S.N., and Shpanchenko, R.V., Complex oxides with coherent intergrowth structures, Russ. Chem. Rev., 1995, vol. 64, pp. 719–729.

    Article  Google Scholar 

  4. Raveau, B., Michel, C., and Hervieu, M., Layered cuprates with dobble and tripple copper layers: Structure and superconductivity, J. Solid State Chem., 1990, vol. 88, pp. 140–162.

    Article  CAS  Google Scholar 

  5. Park, C. and Snyder, R.L., Structures of high temperature cuprate superconductors, J. Am. Chem. Soc., 1995, vol. 78, pp. 3171–3194.

    CAS  Google Scholar 

  6. Wu, M.K., Ashburn, J.R., Torng, C.T., Hor, P.H., Meng, R.L., Gao, L., Huang, J., Wang, Y.Q., and Chu, C.W., Superconductivity at 93 K in a new mixed phase Y-Ba-Cu-O compound system at ambient pressure, Phys. Rev. Lett., 1987, vol. 58, pp. 908–910.

    Article  CAS  PubMed  Google Scholar 

  7. Hor, P.H., Meng, R.L., Wang, Y.Q., Gao, L., Huang, Z.J., Bechtold, J., Forster, K., and Chu, C.W., Superconductivity above 90 K in the square-planar compound system ABa2Cu3O6+x with A = Y, La, Nd, Sm, Eu, Gd, Ho, Er, and Lu, Phys. Rev. Lett., 1987, vol. 58, pp. 1891–1894.

    Article  CAS  PubMed  Google Scholar 

  8. Tarascon, J.M., McKinnon, W.R., Greene, L.H., Hull, G.W., and Vogel, E.M., Oxygen and rare-earth doping of the 90 K superconducting perovskite YBa2Cu3O7–x, Phys. Rev. B, 1987, vol. 36, pp. 226–234.

    Article  CAS  Google Scholar 

  9. Benzia, P., Bottizzoa, E., and Rizzi, N., Oxygen determination from cell dimensions in YBCO superconductors, J. Cryst. Growth, 2004, vol. 269, pp. 625–629.

    Article  Google Scholar 

  10. Asano, H., Ishigaki, T., and Takita, K., Crystal structure of the high Tc superconductor YbBa2Cu3O7–δ, Jpn. J. Appl. Phys., 1987, vol. 26, pp. 1064–1065.

    Article  Google Scholar 

  11. Ishigaki, T., Asano, H., and Takita, K., Crystal structure of the high Tc superconductor TmBa2Cu3O7–δ, Jpn. J. Appl. Phys., 1987, vol. 26, pp. 1226–1227.

    Article  Google Scholar 

  12. Ishigaki, T., Asano, H., and Takita, K., Crystal structure of the high tc superconductor ErBa2Cu3O7–δ, Jpn. J. Appl. Phys., 1987, vol. 26, pp. 987–988.

    Article  Google Scholar 

  13. Asano, H., Ishigaki, T., and Takita, K., Crystal structure of the HoBa2Cu3Ox superconductor determined by X-ray powder diffraction, Jpn. J. Appl. Phys., 1987, vol. 26, pp. 714–715.

    Article  Google Scholar 

  14. Raudsepp, M., Hawthorne, F.C., Zhou, X.Z., Maartense, I., Morrish, A.H., and Luo, Y.L., Diamagnetic and structural characterization of orthorhombic high-temperature superconductors in the system Y-Ba-Cu-O, Can. J. Phys., 1987, vol. 65, pp. 1145–1148.

    Article  CAS  Google Scholar 

  15. Fischer, P., Kakurai, K., Steiner, M., Clausen, K.N., Lebech, B., Hulliger, F., Ott, H.R., Bruesch, P., and Unternaehrer, P., Neutron-diffraction evidence for 3D long-range antiferromagnetic ordering in DyBa 2 Cu 3 O 6.95 and for antiferromagnetic correlations in HoBa 2 Cu 3 O 6.8 , Phys. C (Amsterdam, Neth.), 1988, vol. 152, pp. 145–153.

    Google Scholar 

  16. Asano, H., Takita, K., Katoh, H., Akinaga, H., Ishigaki, T., Nishino, M., Imai, M., and Masuda, K., Crystal structure of the high-Tc superconductor LnBa2Cu3O7–δ (Ln = Sm, Eu and Gd), Jpn. J. Appl. Phys., 1987, vol. 26, pp. 1410–1412.

    Article  Google Scholar 

  17. Takita, K., Katoh, H., Akinaga, H., Nishino, M., Ishigaki, T., and Asano, H., X-ray diffraction study on the crystal structure of Nd1+xBa2–xCu3O7–δ, Jpn. J. Appl. Phys., 1988, vol. 27, pp. 57–60.

    Article  Google Scholar 

  18. Lopez-Morales, M.E., Rios-Jara, D., Taguena, J., Escudero, R., la Placa, S.J., Bezinge, A., Lee, V.Y., Engler, E.M., and Grant, P.M., Role of oxygen in PrBa2Cu3O7-y: Effect on structural and physical properties, Phys. Rev. B, 1990, vol. 41, pp. 6655–6657.

    Article  CAS  Google Scholar 

  19. Yoshizaki, R., Sawada, H., Iwazumi, T., Saito, Y., Abe, Y., Ikeda, H., Imai, K., and Nakai, I., Superconductivity and crystal structure of LaBa2Cu3–xOy compounds, Jpn. J. Appl. Phys., Part 2, 1987, vol. 26, pp. 1703–1706.

    Google Scholar 

  20. Plackowski, T., Sulkowski, C., Bukowski, Z., Wlosewicz, D., and Rogacki, K., Electronic structure parameters of Sm 1+x Ba 2–x Cu 3 O y solid solution of orthorhombic and tetragonal structure, Phys. C (Amsterdam, Neth.), 1995, vol. 254, pp. 331–341.

    Google Scholar 

  21. Bardeen, J., Cooper, L., and Schrieffer, J.R., Theory of Superconductivity, New York: Perseus, 1999.

    Google Scholar 

  22. Ginzburg, V.L. and Landau, L.D., To the theory of superconductivity, Zh. Eksp. Teor. Fiz., 1950, vol. 20, pp. 1064–1081.

    CAS  Google Scholar 

  23. London, F. and London, H., The electromagnetic equations of the supraconductor, Proc. R. Soc. London, Ser. A, 1935, vol. 149, no. 866, p. 71.

    Article  Google Scholar 

  24. Meissner, W. and Ochsenfeld, R., Ein neuer effekt bei eintritt der supraleitfahigkeit, Naturwissensch., 1933, vol. 21, no. 44, pp. 787–788.

    Article  Google Scholar 

  25. Shmidt, V.V., Vvedenie v fiziku sverkhprovodnikov (Introduction to the Physics of Superconductors), 2nd ed., Moscow: MTsNMO, 2000.

  26. Adrian, H., Tome-Rosa, C., Jakob, G., Walkenhorst, A., Maul, M., Paulson, M., and Becherer, T., Thin film preparation, transport properties and superconductivity of YBa2Cu3O7, Supercond. Sci. Technol., 1991, vol. 4, pp. 166–168.

    Article  Google Scholar 

  27. Iwasaki, H., Inaba, S., Sugioka, K., Nozaki, Y., and Kobayashi, N., Superconducting anisotropy in the Y-based system substituted for the Y, Ba and Cu sites, Phys. C (Amsterdam, Neth.), 1997, vol. 290, pp. 113–121.

    Google Scholar 

  28. Shamray, V.F., Mikhailova, A.B., and Mitin, A.V., Crystal structure and superconductivity of Bi-2223, Crystallogr. Rep., 2009, vol. 54, no. 4, pp. 584–590.

    Article  CAS  Google Scholar 

  29. Heine, K., Tenbrink, J., and Thöner, M., High-field critical current densities in Bi2Sr2Ca1Cu2O8+x/Ag wires, Appl. Phys. Lett., 1989, vol. 55, no. 23, pp. 2441–2443.

    Article  CAS  Google Scholar 

  30. Matsumoto, A., Kitaguchi, H., Kumakura, H., Nishioka, J., and Hasegawa, T., Improvement of the microstructure and critical current densities of Bi-2212 round wires with a precisely controlled heat treatment, Supercond. Sci. Technol., 2004, vol. 17, pp. 989–992.

    Article  CAS  Google Scholar 

  31. Han, Z. and Freltoft, T., The mechanical deformation process for preparing Ag-sheathed BiSrCaCuO superconducting tapes, Appl. Supercond., 1994, vol. 2, nos. 3–4, pp. 201–215.

    Article  CAS  Google Scholar 

  32. Hu, Q.Y., Liu, H.K., and Dou, S.X., Fabrication of Ag sheathed Bi2223 tape with supercold rolling process, Phys. C (Amsterdam, Neth.), 1997, vol. 274, pp. 204–208.

    Google Scholar 

  33. Iwasa, Yu., HTS and NMR/MRI magnets: Unique features, opportunities, and challenges, Phys. C (Amsterdam, Neth.), vol. 445–448, pp. 1088–1094.

  34. Sumitomo Electric, Japan, 2016. https://global-sei.com/company/press/2016/02/prs012.html. Accessed February 5, 2022.

  35. Sytnikov, V.E., Vysotsky, V.S., Radchenko, I.P., and Polyakova, N.V., 1g versus 2g-comparison from the practical standpoint for HTS power cables use, J. Phys.: Conf. Ser., 2008, vol. 97, p. 012058.

    Google Scholar 

  36. Xie, Y.-Yu. et al., Second-generation HTS conductor design and engineering for electrical power applications, IEEE Trans. Appl. Supercond., 2009, vol. 19, no. 3, pp. 3009–3013.

    Article  CAS  Google Scholar 

  37. Iijima, Y., Kakimoto, K., Sutoh, Y., Ajimura, S., and Saitoh, T., Development of long Y-123 coated conductors by ion-beam-assisted-deposition and the pulsed-laser-deposition method, Supercond. Sci. Technol., 2004, vol. 17, pp. S264–S268.

    Article  CAS  Google Scholar 

  38. Second-Generation HTS Conductors, Goyal, A., Ed., Berlin: Springer, 2004.

    Google Scholar 

  39. Wang, L., Qu, T., Feng, F., Zou, S., Yang, Z., Ma, Z., and Feng, P., Improvement of bi-layered YBCO superconducting films by using Ag and Au interlayers, Ceram. Int., 2019, vol. 46, no. 3, pp. 3394–3399.

    Article  Google Scholar 

  40. Rodionov, D.P., Gervas’eva, I.V., and Khlebnikova, Yu.V., Teksturovannye podlozhki iz nikelevykh splavov (Textured Nickel Alloy Substrates), Ekaterinburg: UrO RAN, 2012.

  41. Huhne, R., Eickemeyer, J., Sarma, V.S., Guth, A., et al., Application of textured highly alloyed Ni-W tapes for preparing coated conductor architectures, Supercond. Sci. Technol., 2010, vol. 23, p. 034015.

    Article  Google Scholar 

  42. Kaul, A.R., Samoilenkov, S.V., Amelichev, V.A., Dosovitsky, G.A., et al., Development of non-magnetic biaxially textured tape and MOCVD processes for coated conductor fabrication, Phys. Proc., 2012, vol. 36, pp. 1434–1439.

    Article  CAS  Google Scholar 

  43. Rupich, M.W., The rabits approach for second generation (2G) high temperature superconductors, in Encyclopedia of Materials: Technical Ceramics and Glasses, Pomeroy, M., Ed., Amsterdam: Elsevier, 2021, pp. 174–182.

    Google Scholar 

  44. Molodyk, A.A. and Kaul’, A.R., Second generation HTSC tapes—new materials for electric power industry based on epitaxial heterostructures, Ross. Khim. Zh., 2013, vol. 17, no. 6, pp. 48–65.

    Google Scholar 

  45. Iijima, I., Tanabe, N., Ikeno, Y., and Kohno, O., In-plane aligned YBa2Cu3O7–x thin films deposited on polycrystalline metallic substrates, Appl. Phys. Lett., 1992, vol. 60, pp. 769–771.

    Article  CAS  Google Scholar 

  46. Ievlev, V. M., Tonkie plenki neorganicheskikh materialov: mekhanizm rosta i struktura (Thin Films of Inorganic Materials: Growth Mechanism and Structure), Voronezh: Voron. Gos. Univ., 2008.

  47. Wang, C.P., Do, K.B., Beasley, M.R., Geballe, T.H., and Hammond, R.H., Deposition of in-plane textured MgO on amorphous Si3N4 substrates by ion-beam-assisted deposition and comparisons with ion-beam-assisted deposited yttria-stabilized-zirconia, Appl. Phys. Lett., 1997, vol. 71, pp. 2955–2957.

    Article  CAS  Google Scholar 

  48. Brewer, R.T. and Atwater, H.A., Rapid biaxial texture development during nucleation of MgO thin films during ion beam-assisted deposition, Appl. Phys. Lett., 2002, vol. 80, pp. 3388–3390.

    Article  CAS  Google Scholar 

  49. Zepeda-Ruiz, L.A. and Srolovitz, D.J., Effects of ion beams on the early stages of MgO growth, J. Appl. Phys., 2002, vol. 91, pp. 10169–10180.

    Article  CAS  Google Scholar 

  50. Findikoglu, A.T., Kreiskott, S., te Riele, P.M., and Matias, V.J., Role of beam divergence and ion-to-molecule flux ratio in ion-beam-assisted deposition texturing of MgO, J. Mater. Res., 2004, vol. 19, pp. 501–504.

    Article  CAS  Google Scholar 

  51. Matias, V., Hanisch, J., Rowley, E.J., and Guth, K., Very fast biaxial texture evolution using high rate ion-beam-assisted deposition of MgO, J. Mater. Res., 2009, vol. 24, pp. 125–129.

    Article  CAS  Google Scholar 

  52. Groves, J.R., de Paula, R.F., Stan, L., Hammond, R.H., and Clemens, B.M., Fundamental aspects of ion beam assisted deposition of magnesium oxide template films, IEEE Trans Appl. Supercond., 2009, vol. 19, pp. 3311–3314.

    Article  CAS  Google Scholar 

  53. Foltyn, S.R., Arendt, P.N., Jia, Q.X., Wang, H., Macmanus-Driscoll, J. L., Kreiskott S., DePaula, R.F., Stan L., Groves J. R., and Dowden P. C., Strongly coupled critical current density values achieved in Y1Ba2Cu3O7–δ coated conductors with near-single-crystal texture, Appl. Phys. Lett., 2003, vol. 82, pp. 4519–4521.

    Article  CAS  Google Scholar 

  54. Dürrschnabel, M., Aabdin, Z., Bauer, M., Semerad, R., Prusseit, W., and Eibl, O., DyBa2Cu3O7–x superconducting coated conductors with critical currents exceeding 1000 A cm–1, Supercond. Sci. Technol., 2012, vol. 25, p. 105007.

    Article  Google Scholar 

  55. Blatter, G. et al., Vortices in high-temperature superconductors, Rev. Mod. Phys., 1994, vol. 66, pp. 1125–1388.

    Article  CAS  Google Scholar 

  56. Hilgenkamp, H. and Mannhart, J., Grain boundaries in high-Tc superconductors, Rev. Mod. Phys., 2002, vol. 74, pp. 485–529.

    Article  CAS  Google Scholar 

  57. Dimos, D., Chaudhari, P., and Mannhart, J., Superconducting transport properties of grain boundaries in YBa2Cu3O7 bicrystals, Phys. Rev. B, 1990, vol. 41, no. 7, pp. 4038–4049.

    Article  CAS  Google Scholar 

  58. Deng et al., Fabrication of Bi-2223 superconducting thick films via a non-vacuum method, Mater. Express, 2016, vol. 6, no. 5, pp. 430–436.

    Article  CAS  Google Scholar 

  59. Kametani, F., Shen, T., Jiang, J., Scheuerlein, C., di Michiel, M., Huang, Y., Miao, H., Parrell, J.A., Hellstrom, E.E., and Larbalestier, D.C., Bubble formation within filaments of melt-processed Bi-2212 wires and its strongly negative effect on the critical current density, Supercond. Sci. Technol., 2011, vol. 24, p. 075009.

    Article  Google Scholar 

  60. Meilikhov, E.Z., Currents in HTSC ceramics: Overcoming the boundaries, Priroda, 1999, no. 3, pp. 49–58.

  61. Ginzburg, V.L. and Andryushin, E.A., Sverkhprovodimost’ (Superconductivity), Moscow: Al’fa-M, 2006.

  62. Akop’yan, V., Parinov, I., and Chang, S., Superconductivity: Methods for obtaining high-temperature superconductors, RELGA, 2010, no. 2, p. 200. http://www.relga.ru/Environ/WebObjects/tgu-www. woa/wa/Main?textid=2556&level1=main&level2= articles.

  63. Zhang, Ch., Du, Xi., and Zhang, H., Improved biaxial texture of tri-layer YBCO/CaTiO 3 /YBCO films using an all chemical solution deposition method, Phys. C (Amsterdam, Neth.), 2020, vol. 578, p. 1353737.

    Google Scholar 

  64. Dong, Z.B. et al., Preparation of high performance YGdBCO films by low fluorine TFA-MOD process, J. Rare Earths, 2020, vol. 38, pp. 755–762.

    Article  CAS  Google Scholar 

  65. Wang, R.P., Zhou, Y.L., Pan, S.H., He, M., Lu, H.B., Chen, Z.H., Yang, G.Z., Liu, C.F., Wu, X., Wang, F.Y., Feng, Y., Zhang, P.X., Wu, X.Z., and Zhou, L., Deposition of high-temperature superconducting films on biaxially textured Ni(001) substrates, Phys. C (Amsterdam, Neth.), 2000, vol. 337, pp. 87–90.

    Google Scholar 

  66. Goyal, A., Norton, D.P., Kroeger, D.M., et al., Conductor with controlled grain boundaries: An approach to the next generation high temperature superconducting wire, J. Mater. Res., 1997, vol. 12, pp. 2924–2940.

    Article  CAS  Google Scholar 

  67. Goyal, A., Ren, S.X., Specht, E.D., et al., Texture formation and grain boundary networks in rolling assisted biaxially textured substrates and in epitaxial YBCO films on such substrates, Micron, 1999, vol. 30, pp. 463–478.

    Article  Google Scholar 

  68. Park, C., Norton, D.P., Budai, J.D., et al., Bend strain tolerance of critical currents for YBa2Cu3O7 films deposited on rolled-textured (001)Ni, Appl. Phys. Lett., 1998, vol. 73, pp. 1904–1906.

    Article  CAS  Google Scholar 

  69. Lee, D.F., Paranthaman, M., Mathis, J.E., et al., Alternative buffer architectures for high critical current density YBCO superconducting deposits on rolling assisted biaxially-textured substrates, Jpn. J. Appl. Phys., 1999, vol. 38, pp. L178–L180.

    Article  CAS  Google Scholar 

  70. Aytug, T., Wu, J.Z., Cantoni, C., et al., Growth and superconducting properties of YBa2Cu3O7–δ films on conductive SrRuO3 and LaNiO3 multilayers for coated conductor applications, Appl. Phys. Lett., 2000, vol. 76, pp. 760–762.

    Article  CAS  Google Scholar 

  71. Feldmann, D.M., Reeves, J.L., Polyanskii, A.A., et al., Influence of nickel substrate grain structure on YBa2Cu3O7–x supercurrent connectivity in deformation-textured coated conductors, Appl. Phys. Lett., 2000, vol. 77, pp. 2906–2908.

    Article  CAS  Google Scholar 

  72. Reeves, J.L., Feldmann, D.M., Yang, C.-Y., and Larbalestier, D.C., Current barriers in Y-Ba-Cu-O coated conductors, IEEE Trans. Appl. Supercond., 2001, vol. 11, pp. 3863–3867.

    Article  Google Scholar 

  73. Kerchner, H.R., Norton, D.P., Goyal, A., et al., Alternating current losses in biaxially textured YBa2Cu3O7–δ films on Ni tapes, Appl. Phys. Lett., 1997, vol. 71, pp. 2029–2031.

    Article  CAS  Google Scholar 

  74. Favre, S., Ariosa, D., Yelpo, C., Mazini, M., and Faccio, R., Depression of critical temperature due to residual strain induced by PLD deposition on YBa2Cu3O7–δ thin films, Mater. Chem. Phys., 2021, vol. 266, p. 124507.

    Article  CAS  Google Scholar 

  75. Zhang, Y. and Xu, X., Predicting the superconducting transition temperature and relative resistance ratio in YBa2Cu3O7 films, Phys. C (Amsterdam, Neth.), 2022, vol. 592, no. 1353998.

  76. Geohegan, D.B., Puretzky, A.A., and Rader, D.J., Gas-phase nanoparticles formation and transport during pulsed laser deposition of Y1Ba2Cu3O7–δ, Appl. Phys. Lett., 1999, vol. 74, pp. 3788–3790.

    Article  CAS  Google Scholar 

  77. Schey, B., Bollmeier, T., Kuhn, M., Biegel, W., and Stritzker, B., Large area deposition of YBa2Cu3O7–x films by pulsed laser ablation, Rev. Sci. Instrum., 1998, vol. 69, pp. 474–476.

    Article  CAS  Google Scholar 

  78. Kusumori, T. and Muto, H., Effect of target composition on the crystallinity of YBa 2 Cu 3 O 7–x epitaxial films fabricated by Nd: YAG pulsed laser deposition, Phys. C (Amsterdam, Neth.), 2000, vol. 337, pp. 57–61.

    Google Scholar 

  79. Huang, Y.-L., Liu, H.-J., Ma, Ch.-H., Yuc, P., Chua, Y.-H., and Yang, J.-Ch., Pulsed laser deposition of complex oxide heteroepitaxy, Chin. J. Phys., 2019, vol. 60, pp. 481–501.

    Article  CAS  Google Scholar 

  80. Dam, B. et al., Laser ablation threshold of YBa2Cu3O6+x, Appl. Phys. Lett., 1994, vol. 65, pp. 1581–1583.

    Article  CAS  Google Scholar 

  81. Venkatesan, T. et al., Observation of two distinct components during pulsed laser deposition of high Tc superconducting films, Appl. Phys. Lett., 1988, vol. 52, pp. 1193–1195.

    Article  CAS  Google Scholar 

  82. Greer, J.A. and Tabat, M.D., Large-area pulsed laser deposition: Techniques and applications, J. Vac. Sci. Technol., A, 1995, vol. 13, pp. 1175–1181.

    Article  CAS  Google Scholar 

  83. Lorenz, M., Hochmuth, H., Natusch, D., et al., High-quality Y-Ba-Cu-O thin films by PLD-ready for market applications, IEEE Trans. Appl. Supercond., 2001, vol. 11, pp. 3209–3212.

    Article  Google Scholar 

  84. Kinoshita, K., Ishibashi, H., and Kobayashi, T., Improved surface smoothness of YBa2Cu3Oy films and related multilayers by ArF excimer laser deposition with shadow mask “eclipse method,” Jpn. J. Appl. Phys., 1994, vol. 33, pp. L417–L420.

    Article  CAS  Google Scholar 

  85. Pique, A., Venkatesan, T., and Green, S., Pulsed laser passive filter deposition system, US Patent no. 5 458 686, 1995.

  86. Gorbunov, A.A., Pompe, W., Sewing, A., et al., Ultrathin film deposition by pulsed laser ablation using crossed beams, Appl. Surf. Sci., 1996, vols. 96–98, pp. 649–655.

    Article  Google Scholar 

  87. Tselev, A., Gorbunov, A., and Pompe, W., Cross-beam pulsed laser deposition: General characteristic, Rev. Sci. Instrum., 2001, vol. 72, pp. 2665–2672.

    Article  CAS  Google Scholar 

  88. Foltyn, S.R., Surface modification of materials by cumulative laser irradiation, in Pulsed Laser Deposition of Thin Films, Chrisey, D.B. and Hubler, G.K., Eds., New York: Wiley, 1994, pp. 89–114.

    Google Scholar 

  89. Greer, J.A., Commercial scale-up of pulsed laser deposition, in Pulsed Laser Deposition of Thin Films, Chrisey, D.B. and Hubler, G.K., Eds., New York: Wiley, 1994, pp. 293–312.

    Google Scholar 

  90. Geohegan, D.B., Diagnostics and characteristics of laser-produced plasmas, in Pulsed Laser Deposition of Thin Films, Chrisey, D.B. and Hubler, G.K., Eds., New York: Wiley, 1994, pp. 115–166.

    Google Scholar 

  91. Samano, E.C., Machorro, R., Soto, G., and Cota-Araiza, L., In situ ellipsometric characterization of SiNx films grown by laser ablation, J. Appl. Phys., 1998, vol. 84, pp. 5296–5305.

    Article  CAS  Google Scholar 

  92. Weissmantel, S., Reisse, G., Keiper, B., and Schulze, S., Microstructure and mechanical properties of pulsed laser deposited boron nitride films, Diamond Relat. Mater., 1999, vol. 8, pp. 377–381.

    Article  CAS  Google Scholar 

  93. Maguire, J.F., Busbee, J.D., Liptak, D.C., Lubbers, D.P., SeClair, S.R., and Biggers, R.R., Process control for pulsed laser deposition using Raman spectroscopy, US Patent no. 6 038 525, 2000.

  94. Gottmann, J. and Kreutz, E.W., Pulsed laser deposition of alumina and zirconia thin films on polymers and glass as optical and protective coatings, Surf. Coat. Technol., 1999, vols. 116–119, pp. 1189–1194.

    Article  Google Scholar 

  95. Driscoll, J., Bianchetti, M., Kursumovic, A., Kim, G., Jo, W., Lee, J., Hong, G., and Moon, S., Strong pinning in very fast grown reactive co-evaporated GdBa2Cu3O7 coated conductors, APL Mater., 2014, vol. 2, no. 086103.

  96. Indico CERN, Zurich, Switzerland. https://indico.cern.ch/event/364085/contributions/1779828/attachments/724497/994349/FutureMagnetsWP10_ Barcelona_Rossi.pdf. Accessed February 5, 2022.

  97. Abraimov, D., Jaroszynski, J., Weijers, H.W., et al., Critical currents of modern ReBCO conductors in high magnetic fields up to 45T, in Proceedings of the Cryogenic Engineering Conference and International Cryogenic Materials Conference, Hartford, USA, 2019.

  98. Chen, R., Tao, B.W., Zhao, R.P., He, G.Y., Zeng, C., and Lu, X.Y., High-efficiency deposition of 2-in double-sided YBCO thin films in batch with pulsed inject MOCVD, Phys. C (Amsterdam, Neth.), 2020, vol. 570, p. 1353604.

    Google Scholar 

  99. Bradford, G., Constantinescu, A., Viouchkov, Y.L., Larbalestier, D.C., and Stringfellow, G.B., Organometallic Vapor-Phase Epitaxy: Theory and Practice, San Diego: Academic, 1989, p. 398.

    Google Scholar 

  100. Berry, A.D., Gaskill, D.K., Holm, R.T., Cukauskas, E.J., Kaplan, R., and Henry, R.L., Formation of high Tc superconducting films by organometallic chemical vapor deposition, Appl. Phys. Lett., 1988, vol. 52, pp. 1743–1745.

    Article  CAS  Google Scholar 

  101. Yamane, H., Kurosawa, H., and Hirai, T., Preparation of YBa2Cu3O7–x films by chemical vapor deposition, Chem. Lett., 1988, vol. 63, pp. 939–940.

    Article  Google Scholar 

  102. Dickenson, P.H., Geballe, T.H., Sanjurjo, A., et al., Chemical vapor deposition of YBa2Cu3O7–x superconducting films, J. Appl. Phys., 1989, vol. 66, pp. 444–447.

    Article  Google Scholar 

  103. Panson, A.J., Charles, R.G., Schmidt, D.N., Szendon, J.R., Machiko, G.J., and Braginski, A.I., Chemical vapor deposition of YBa2Cu3O7–x using metalorganic chelate precursors, Appl. Phys. Lett., 1988, vol. 53, pp. 1756–1758.

    Article  CAS  Google Scholar 

  104. Zhang, K., Boyd, E.P., Kwak, B.S., Wright, A.C., and Erbil, A., Metalorganic chemical vapor deposition of TlBaCaCuO superconducting thin films on sapphire, Appl. Phys. Lett., 1989, vol. 55, pp. 1258–1260.

    Article  CAS  Google Scholar 

  105. Zhang, K., Kwak, B.S., Boyd, E.P., Wright, A.C., and Erbil, A., C-axis oriented YBa2Cu3O7–x superconducting films by metalorganic chemical vapor deposition, Appl. Phys. Lett., 1989, vol. 54, pp. 380–382.

    Article  CAS  Google Scholar 

  106. Noh, D.W., Gallois, B., Chern, C.S., et al., Metalorganic chemical vapor deposition of superconducting YBa2Cu3O7-x in a high speed rotating disk reactor, J. Appl. Phys., 1989, vol. 66, pp. 5099–5101.

    Article  CAS  Google Scholar 

  107. Yamane, H., Kurosawa, H., Hirai, T., Watanabe, K., Iwasaki, H., Kobayashi, N., and Muto, Y., High critical-current density of Y–Ba–Cu–O superconducting films prepared by CVD, Supercond. Sci. Technol., 1989, vol. 2, pp. 115–117.

    Article  CAS  Google Scholar 

  108. Zhao, J., Li, Y.Q., Chern, C.S., et al., High-quality YBa2Cu3O7–x thin films by plasma-enhanced metalorganic chemical vapor deposition at low temperatures, Appl. Phys. Lett., 1991, vol. 59, pp. 1254–1256.

    Article  CAS  Google Scholar 

  109. Schulte, B., Maul, M., Becker, W., Schlosser, E.G., Elschner, S., Haussler, P., and Adrian, H., Carrier gas-free chemical vapor deposition technique for in situ preparation of high quality YBa2Cu3O7–x thin films, Appl. Phys. Lett., 1991, vol. 59, pp. 869–871.

    Article  CAS  Google Scholar 

  110. Ushida, T., Higa, H., Higashiyama, K., Hirabayashi, I., and Tanaka, S., Preparation of YBa2Cu3O7–x a-axis oriented films by laser metalorganic chemical vapor deposition, Appl. Phys. Lett., 1991, vol. 59, pp. 860–862.

    Article  CAS  Google Scholar 

  111. Higashiyama, K., Ushida, T., Higa, H., Hirabayashi, I., and Tanaka, S., Growth mechanism of a-axis oriented YBa 2 Cu 3 O 7x thin film by laser-induced MOCVD, Phys. C (Amsterdam, Neth.), 1993, vol. 212, pp. 101–109.

    Google Scholar 

  112. Mizushima, Y. and Hirabayashi, I., Fabrication of YBa 2 Cu 3 O 7x film by laser chemical vapor deposition using Ba(Hfa)2tetraglyme, Phys. C (Amsterdam, Neth.), 1994, vol. 235, pp. 577–578.

    Google Scholar 

  113. Tsuruoka, T., Kawasaki, R., and Abe, H., Y–Ba–Cu–O film growth by MOCVD using N2O, Jpn. J. Appl. Phys., 1989, vol. 28, pp. 1800–1802.

    Article  Google Scholar 

  114. Zama, H. and Oda, S., Low-temperature chemical vapor deposition of YBa 2 Cu 3 O 7x films, Phys. C (Amsterdam, Neth.), 1991, vol. 185, pp. 2103–2104.

    Google Scholar 

  115. Drozdov, A. and Troyanov, S., Barium diketonates as precursors for HCSC thin films: Structure and properties, J. Phys., 1995, Coll. C5, vol. 5, pp. 373–377.

  116. Otway, D.J., Obi, B., and Rees, W.S., Precursors for chemical vapor deposition of YBCO, J. Alloys Compd., 1997, vol. 251, pp. 254–263.

    Article  CAS  Google Scholar 

  117. Watson, I.M., Atwood, M.P., and Haq, S., Investigation of barium β-diketonate complexes used in chemical vapor deposition of high Tc oxide films, Supercond. Sci. Technol., 1994, vol. 7, p. 672.

    Article  CAS  Google Scholar 

  118. Kaul’, A.R., Chemical methods for obtaining HTSC films and coatings, Zh. Vses. Khim. Obshch. im. D.I. Mendeleeva, 1989, vol. 34, no. 4, pp. 492–504.

    Google Scholar 

  119. Ignatiev, A., Chou, P.C., Zhong, Q., Zhang, X., and Chen, Y.M., Photo-assisted MOCVD fabrication of YBCO thick films and buffer layers on flexible metal substrates for wire applications, Int. J. Mod. Phys. B, 1998, vol. 12, nos. 29–31, pp. 3162–3173.

    Article  CAS  Google Scholar 

  120. Hor, P.H., Chu, J.W., Wang, Y.Q., Feng, H.H., Sun, Y.Y., Matsuishi, K., Xiong, Q., and Chu, C.W., Stability and superconductivity in Tb-123, Preprint Texas Center for Superconductivity, vol. 92, p. 043.

  121. Park, M., Kramer, M.J., Dennis, K.W., and McCallum, R.W., Phase equilibria in the Pr–Ba–Cu–O system under varied oxygen partial pressures, Phys. C (Amsterdam, Neth.), 1996, vol. 259, pp. 45–53.

    Google Scholar 

  122. Skakle, J.M.S. and West, A.R., Formation and decomposition of LaBa2Cu3O7–δ, J. Matter. Chem., 1994, vol. 4, pp. 1745–1748.

    Article  CAS  Google Scholar 

  123. Wong-Ng, W., Paretzkin, B., and Fuller, E.R., Crystal chemistry and phase equilibria studies of the BaO(BaCO3)-R2O3-CuO systems. IV. Crystal chemistry and subsolidus phase relationship studies of the CuO-rich region of the ternary diagrams, R = lanthanides, J. Solid State Chem., 1990, vol. 85, pp. 117–132.

    Article  CAS  Google Scholar 

  124. Kaul, A.R., Gorbenko, O.Yu., Graboy, I.E., and Samoilenkov, S.V., Epitaxial stabilization of oxide phases in thin film growth, in Crystal Growth in Thin Solid Films: Control of Epitaxy, Research Signpost, 2002, pp. 265–294.

    Google Scholar 

  125. Feenstra, R., Lindemer, T.B., Budai, J.D., and Galloway, M.D., Effects of oxygen pressure on the synthesis of YBa2Cu3O7–x thin films by post-deposition annealing, J. Appl. Phys., 1991, vol. 69, pp. 6569–6584.

    Article  CAS  Google Scholar 

  126. Kazin, P.E., Os’kina, T.E., and Tretyakov, Yu.D., AC susceptibility weak link characterization in the Bi–Pb–Ca–Sr–G–O thick films on (in) Ag tape, Appl. Supercond., 1993, vol. 1, nos. 7–9, pp. 1007–1013.

    Article  CAS  Google Scholar 

  127. Brosha, E.L., Davies, P.K., Garzon, F.H., and Raistrick, I.D., Metastability of superconducting compounds in the Y–Ba–Cu–O system, Science (Washington, DC, U. S.), 1993, vol. 260, pp. 196–198.

    Article  CAS  Google Scholar 

  128. Brosha, E.L., Garzon, F.H., and Raistrick, I.D., Low-temperature phase equilibria in the Y–Ba–Cu–O system, J. Am. Chem. Soc., 1995, vol. 78, pp. 1745–1752.

    CAS  Google Scholar 

  129. Yanovskii, V.K., Voronkova, V.I., Vodolazskaya, I.V., Leont’eva, I.N., and Petrovskaya, T.P., Behavior of superconducting compounds RBa2Cu3O7–y (R - rare earth elements) at high temperatures, Sverkhprovodim.: Fiz. Khim., Tekh., 1989, no. 2, pp. 30–33.

  130. Murakami, M., Sakai, N., Higuchi, T., and Yoo, S.I., Melt-processed light rare earth element- Ba–Cu–O, Supercond. Sci. Technol., 1996, vol. 9, pp. 1015–1032.

    Article  CAS  Google Scholar 

  131. Muralidhar, M., Chauhan, H.S., Saitoh, T., Kamada, K., Segawa, K., and Murakami, M., Effect of mixing three rare-earth elements on the superconducting properties of REBa2Cu3Oy, Supercond. Sci. Technol., 1997, vol. 10, pp. 663–670.

    Article  CAS  Google Scholar 

  132. Hauck, J., Pseudobinary phase diagrams of YBa2Cu3Ox and YBa2Cu4Ox, Supercond. Sci. Technol., 1996, vol. 9, pp. 1033–1038.

    Article  CAS  Google Scholar 

  133. Hauck, J., Bickmann, K., and Mika, K., Pseudobinary phase diagrams of RBa2Cu3Ox, R = La, Ce, Pr, Nd and Y, Supercond. Sci. Technol., 1998, vol. 11, pp. 63–67.

    Article  CAS  Google Scholar 

  134. Saitoh, T., Segawa, K., Kamada, K., Sakai, N., Segawa, T., Yoo, S.I., and Murakami, M., Microstructures and superconducting properties of melt-processed (RE, RE’)BaCuO, Phys. C (Amsterdam, Neth.), 1997, vol. 288, pp. 141–147.

    Google Scholar 

  135. Ferretti, M., Magnone, E., and Olcese, G.L., Single crystal growth and phase diagram studies in the RBa 2 Cu 3 O 7–x systems (R = Y and rare earths), Phys. C (Amsterdam, Neth.), 1994, vols. 235–240, pp. 311–312.

    Google Scholar 

  136. Samoilenkov, S.V., RBa2Cu3O7–y thin epitaxial films: chemical vapor deposition, structure and properties, Cand. Sci. (Chem.) Dissertation, 1999.

  137. Watson, I.M., Atwood, M.P., and Cumberbatch, T.J., Triaxially oriented growth of CuO on MgO (001): X-ray diffraction studies of pure CuO films and inclusions in superconducting Y–Ba–Cu–O films prepared by MOCVD, Thin Solid Films, 1994, vol. 251, pp. 51–62.

    Article  CAS  Google Scholar 

  138. Gorbenko, O.Yu., Fuflyigin, V.N., Erokhin, Yu.Yu., Graboy, I.E., Kaul, A.R., Tretyakov, Yu.D., Wahl, G., and Klippe, L., YBCO and BSCCO thin films prepared by wet MOCVD, J. Mater. Chem., 1994, vol. 4, pp. 1585–1589.

    Article  CAS  Google Scholar 

  139. Wang, H., Serquis, A., Maiorov, B., Civale, L., Jia, Q.X., Arendt, P.N., and Foltyn, S.R., MacManus-Driscoll, J.L., and Zhang, X., Microstructure and transport properties of Y-rich YBa2Cu3O7–x thin films, J. Appl. Phys., 2006, vol. 100, pp. 053904–053904.

    Article  Google Scholar 

  140. Moyzykh, M., Boytsova, O., Samoilenkov, S., Amelichev, V., Kaul, A., Voloshin, I., Lacroix, B., Paumier, F., and Gaboriaud, R., Effects of yttrium oxide inclusions on the orientation and superconducting properties of YBCO films, Kondens. Sredy Mezhfaz. Granitsy, 2013, vol. 15, no. 2, pp. 91–98.

    Google Scholar 

  141. Samoylenkov, S.V., Gorbenko, O.Yu., Graboy, I.E., Kaul, A.R., Zandbergen, H.W., and Connolly, E., Secondary phases in (001)RBa2Cu3O7–δ epitaxial thin films, Chem. Mater., 1999, vol. 11, pp. 2417–2428.

    Article  CAS  Google Scholar 

  142. Graboi, I.E. and Putlyaev, V.I., Oxygen stoichiometry of high-temperature superconductors, Zh. Vses. Khim. Ob-va, 1989, vol. 34, pp. 473–480.

    CAS  Google Scholar 

  143. Prado, F., Caneiro, A., and Serquis, A., High temperature thermodynamic properties, orthorhombic-tetragonal transition and phase stability of GdBa 2 Cu 3 O y and related R123 compounds, Phys. C (Amsterdam, Neth.), 1998, vol. 295, pp. 235–246.

    Google Scholar 

  144. Markelov, A.V., Influence of buffer layers on the oriented growth of RBa2Cu3O7–δ films (R-rare-earth element) and their superconducting characteristics, Cand. Sci. (Chem.) Dissertation, 2011.

  145. Zhang, H., Yang, J., Wang, Sh., Wu, Yu., Lv, Q., and Li, Sh., Film thickness dependence of microstructure and superconductive property of PLD prepared YBCO layers, Phys. C (Amsterdam, Neth.), 2014, vol. 499, pp. 54–56.

    Google Scholar 

  146. Nakamura, Y., Kudo, S., Mukaida, M., and Ohshima, S., Dependence of crystalline orientation on film thickness of sputtered YBa 2 Cu 3 O 7–x on an MgO substrate, Phys. C (Amsterdam, Neth.), 2003, vol. 392–396, pp. 1276–1280.

    Google Scholar 

  147. Li, G., Fang, X., Zhao, L., et al., Precisely determined temperature window size for the growth of high quality c-axis oriented YBCO films by photo-assisted MOCVD, Phys. C (Amsterdam, Neth.), 2008, vol. 468, pp. 2213–2218.

    Book  Google Scholar 

  148. Zhao, P., Iton, A., and Goto, T., Rapid deposition of YBCO films by laser CVD and effect of lattice mismatch on their epitaxial growth and critical temperature, Ceram. Int., 2013, vol. 39, pp. 7491–7497.

    Article  CAS  Google Scholar 

  149. Wang, R.-P., Zhou, Y.-L., Pan, S.-H., et al., Structural characteristics of a-axis-oriented PrBa2Cu3O7 thin films grown by pulsed laser deposition, J. Cryst. Growth, 1999, vol. 204, pp. 293–297.

    Article  CAS  Google Scholar 

  150. Low, B.L., Xu, S.Y., Ong, C.K., Wang, X.B., and Shen, Z.X., Substrate temperature dependence of the texture quality in YBCO thin films fabricated by on-axis pulsed-laser ablation, Supercond. Sci. Technol., 1997, vol. 10, pp. 41–46.

    Article  CAS  Google Scholar 

  151. Jeschke, U., Schneider, R., Ulmer, G., and Linker, G., Influence of the substrate material on the growth directional of YBCO thin films, Phys. C (Amsterdam, Neth.), 1995, vol. 243, pp. 243–251.

    Google Scholar 

  152. Mukaida, M. and Miyazawa, S., Nature of preferred orientation of YBa2Cu3Ox thin films, Jpn. J. Appl. Phys., 1993, vol. 32, pp. 4521–4528.

    Article  CAS  Google Scholar 

  153. Markelov, A.V., Samoilenkov, S.V., Akbashev, A.R., Vasiliev, A.L., and Kaul, A.R., Control of orientation of RBa2Cu3O7 films on substrates with low lattice mismatch via seed layer formation, IEEE Trans. Appl. Supercond., 2011, vol. 21, no. 3, pp. 3066–3069.

    Article  CAS  Google Scholar 

  154. Scheel, H.J., Materials engineering problems in crystal growth and epitaxy of cuprate superconductors, Mater. Res. Soc. Bull., 1994, vol. 19, pp. 26–32.

    Article  CAS  Google Scholar 

  155. Jiang, Y.-S., Kobayashi, T., and Goto, T., Preparation of a-axis oriented YBCO film on CeO2 buffered sapphire substrate, IEEE Trans. Appl. Supercond., 1999, vol. 9, no. 2, pp. 1657–1660.

    Article  Google Scholar 

  156. Park, J.H., Jeong, Y.S., and Lee, S.Y., Investigation on the relation between the thickness and the orientation of epitaxially grown YBCO thin films by laser ablation, Thin Solid Films, 1998, vol. 318, pp. 243–246.

    Article  CAS  Google Scholar 

  157. Obradors, X., Puig, T., Ricart, S., et al., Growth, nanostructure and vortex pinning in superconducting YBa2Cu3O7 thin films based on trifluoroacetate solutions, Supercond. Sci. Technol., 2012, vol. 25, p. 123001.

    Article  Google Scholar 

  158. Obradors, X., Puig, T., Gibert, M., Queralto, A., Zabaleta, J., and Mestres, N., Chemical solution route to self-assembled epitaxial oxide nanostructures, Chem. Soc. Rev., 2014, vol. 43, pp. 2200–2225.

    Article  CAS  PubMed  Google Scholar 

  159. Feng, F., Huang, R.X., Qu, T.M., et al., Property improvement of 600-nm-thick YBCO superconducting films fabricated using a Pb-modified MOD method, IEEE Trans. Appl. Supercond., 2016, vol. 26, p. 7200805.

    Article  Google Scholar 

  160. Krylova, T.S., Chernykh, I.A., Chernykh, M.Y., Krasnoperov, E.P., and Zanaveskin, M.L., YBa2Cu3Ox–SrTiO3 multilayer approach on textured Ni-W tapes: Morphology, structure and critical current density improvement, Thin Solid Films, 2015, vol. 598, pp. 289–292.

    Article  Google Scholar 

  161. Foltyn, S.R., Wang, H., Civale, L., Jia, Q.X., Arendt, P.N., et al., Overcoming the barrier to 1000A/cm width superconducting coatings, Appl. Phys. Lett., 2005, vol. 87, p. 162505.

    Article  Google Scholar 

  162. Shchukin, A.E., Kaul, A.R., Vasiliev, A.L., and Rudnev, I.A., Synthesis, structure and superconducting properties of laminated thin film composites of YBa2Cu3O7–δ/Y2O3 as components of 2G HTS wires, Kondens. Sredy Mezhfaz. Granitsy, 2021, vol. 23, no. 1, pp. 122–139.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Shchukin.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchukin, A.E., Kaul’, A.R. Approaches to Increasing the Current-Carrying Characteristics in Second-Generation HTSC Tapes. Inorg Mater 58, 1365–1397 (2022). https://doi.org/10.1134/S0020168522130015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522130015

Keywords:

Navigation