Skip to main content
Log in

Formation of Magnesium Hydrosilicate Nanoscrolls with the Chrysotile Structure from Nanocrystalline Magnesium Hydroxide and Their Thermally Stimulated Transformation

  • Published:
Inorganic Materials Aims and scope

Abstract

This paper examines the effect of size parameters of magnesium hydroxide nanoparticles prepared by different methods on the formation of hydrosilicate nanoscrolls with the composition Mg3Si2O5(OH)4 under hydrothermal conditions, their geometric characteristics, and their thermal behavior. Magnesium hydrosilicate nanoscrolls with the chrysotile structure have been shown to form regardless of the hydrothermal treatment time and the method used to prepare magnesium hydroxide. At the same time, the nanoscroll length distribution and, especially, the nanoscroll diameter distribution depend on the method used to prepare magnesium hydroxide. In the case of hydrosilicate samples synthesized from Mg(OH)2 prepared by mixing reagents in microreactor with free impinging jets, the exothermic peak due to the conversion of magnesium hydrosilicate into magnesium silicate with the forsterite structure is located at a temperature of 817°C, whereas in the case of samples prepared from magnesium hydroxide synthesized via reverse precipitation the peak is shifted to higher temperatures (825°C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Métraux, C., Grobéty, B., and Ulmer, P., Filling of chrysotile nanotubes with metals, J. Mater. Res., 2002, vol. 17, no. 5, pp. 1129–1135. https://doi.org/10.1557/JMR.2002.0167

    Article  Google Scholar 

  2. Borisov, S., Hansen, T., Kumzerov, Yu., Naberezhnov, A., Simkin, V., Smirnov, O., Sotnikov, A., Tovar, M., and Vakhrushev, S., Neutron diffraction study of NaNO2 ferroelectric nanowires, Phys. B (Amsterdam, Neth.), vol. 350, nos. 1–3, suppl., pp. 1119–1121. https://doi.org/10.1016/j.physb.2004.03.304

  3. Gofman, I.V., Svetlichnyi, V.M., Yudin, V.E., Dobrodumov, A.V., Didenko, A.L., Abalov, I.V., Korytkova, E.N., Egorov, A.I., and Gusarov, V.V., Modification of films of heat-resistant polyimides by adding hydrosilicate and carbon nanoparticles of various geometries, Russ. J. Gen. Chem., 2007, vol. 77, no. 7, pp. 1158–1163. https://doi.org/10.1134/S1070363207070043

    Article  CAS  Google Scholar 

  4. Kononova, S.V., Korytkova, E.N., Romashkova, K.A., Kuznetsov, Yu.P., Gofman, I.V., Svetlichnyi, V.M., and Gusarov, V.V., Nanocomposite based on polyamidoimide with hydrosilicate nanoparticles of varied morphology, Russ. J. Appl. Chem., 2007, vol. 80, no. 12, pp. 2142–2148. https://doi.org/10.1134/S1070427207120297

    Article  CAS  Google Scholar 

  5. Kononova, S.V., Korytkova, E.N., Maslennikova, T.P., Romashkova, K.A., Krushinina, E.V., Potokin, I.L., and Gusarov, V.V., Polymer–inorganic nanocomposites based on aromatic polyamidoimides effective in the processes of liquids separation, Russ. J. Gen. Chem., 2010, vol. 80, no. 6, pp. 966–972. https://doi.org/10.1134/S1070363210060162

    Article  CAS  Google Scholar 

  6. Cheng, L., Zhai, L., Liao, W., Huang, X., Niu, B., and Yu, Sh., An investigation on the behaviors of thorium(IV) adsorption onto chrysotile nanotubes, J. Environ. Chem. Eng., 2014, vol. 2, no. 3, pp. 1236–1242. https://doi.org/10.1016/j.jece.2014.05.014

    Article  CAS  Google Scholar 

  7. Bavykin, D.V. and Walsh, F.C., Elongated titanate nanostructures and their applications, Eur. J. Inorg. Chem., 2009, no. 8, pp. 977–997. https://doi.org/10.1002/ejic.200801122

  8. Golubeva, O.Yu., Maslennikova, T.P., Ul’yanova, N.Yu., and Dyakina, M.P., Sorption of lead(II) ions and water vapors by synthetic hydro- and aluminosilicates with layered, framework, and nanotube morphology, Glass Phys. Chem., 2014, vol. 40, no. 2, pp. 250–255. https://doi.org/10.1134/S1087659614020084

    Article  CAS  Google Scholar 

  9. Kumzerov, Yu.A. and Naberezhnov, A.A., Effect of restricted geometry on superconducting properties of low-melting metals (review), Low Temp. Phys., 2016, vol. 42, no. 11, pp. 1028–1040. https://doi.org/10.1063/1.4971168

    Article  CAS  Google Scholar 

  10. Chivilikhin, S.A., Gusarov, V.V., and Popov, I.Yu., Charge pumping in nanotube filled with electrolyte, Chin. J. Phys., 2018, vol. 56, no. 5, pp. 2531–2537. https://doi.org/10.1016/j.cjph.2018.06.004

    Article  CAS  Google Scholar 

  11. López-Salinas, E., Toledo-Antonio, J.A., Manríquez, M.E., Sánchez-Cantú, M., Cruz Ramos, I., and Hernández-Cortez, J.G., Synthesis and catalytic activity of chrysotile-type magnesium silicate nanotubes using various silicate sources, Microporous Mesoporous Mater., 2019, vol. 274, pp. 176–182. https://doi.org/10.1016/j.micromeso.2018.07.041

    Article  CAS  Google Scholar 

  12. Yang, Y., Liang, Q., Li, J., Zhuang, Y., He, Y., Bai, B., and Wang, X., Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries, Nano Res., 2011, vol. 4, pp. 882–890. https://doi.org/10.1007/s12274-011-0144-7

    Article  CAS  Google Scholar 

  13. Bian, Z., Li, Z., Ashok, J., and Kawi, S., A highly active and stable Ni–Mg phyllosilicate nanotubular catalyst for ultrahigh temperature water–gas shift reaction, Chem. Commun., 2015, vol. 51, pp. 16324–16326. https://doi.org/10.1039/C5CC05226B

    Article  CAS  Google Scholar 

  14. Khrapova, E.K., Ugolkov, V.L., Straumal, E.A., Lermontov, S.A., Lebedev, V.A., Kozlov, D.A., and Krasilin, A.A., Thermal behavior of Mg–Ni-phyllosilicate nanoscrolls and performance of the resulting composites in hexene-1 and acetone hydrogenation, ChemNanoMat, 2020, vol. 7, no. 3, pp. 257–269. https://doi.org/10.1002/cnma.202000573

    Article  CAS  Google Scholar 

  15. Chivilikhin, S.A., Gusarov, V.V., Popov, I.Yu., and Svitenkov, A.I., Model of fluid flow in a nano-channel, Russ. J. Math. Phys., 2008, vol. 15, no. 3, pp. 409–411.

    Google Scholar 

  16. Maslennikova, T.P., Korytkova, E.N., and Gusarov, V.V., Interaction of Mg3Si2O5(OH)4 nanotubes with potassium hydroxide, Russ. J. Appl. Chem., 2008, vol. 81, no. 3, pp. 389–392. https://doi.org/10.1134/S107042720803004X

    Article  CAS  Google Scholar 

  17. Maslennikova, T.P. and Korytkova, E.N., Aqueous solutions of cesium salts and cesium hydroxide in hydrosilicate nanotubes of the Mg3Si2O5(OH)4 composition, Glass Phys. Chem., 2010, vol. 36, no. 3, pp. 345–350. https://doi.org/10.1134/S1087659610030119

    Article  CAS  Google Scholar 

  18. Vakhrushev, S.B., Ivanov, A., Kumzerov, Yu.A., Naberezhnov, A.A., Petrov, A.A., Semkin, V.N., and Fokin, A.V., Investigation of longitudinal vibrations of –O–H groups in chrysotile asbestos by neutron scattering and polarized infrared spectroscopy, Phys. Solid State, 2011, vol. 53, no. 2, pp. 416–420. https://doi.org/10.1134/S1063783411020338

    Article  CAS  Google Scholar 

  19. Kryazheva, K.S., Korytkova, E.N., Maslennikova, T.P., and Ugolkov, V.L., Interacton of chrisotyl nanotubes with water–alcohol solutons at different temperature–time parameters, Glass Phys. Chem., 2012, vol. 38, no. 1, pp. 122–130. https://doi.org/10.1134/S1087659612010087

    Article  CAS  Google Scholar 

  20. Chivilikhin, S.A., Popov, I.Yu., Aryslanova, E.M., Vavulin, D.N., and Gusarov, V.V., Liquid flow in nanotubes, J. Phys.: Conf. Ser., 2012, vol. 345, p. 012036.

    Google Scholar 

  21. Rodygina, O.A., Chivilikhin, S.A., Popov, I.Yu., and Gusarov, V.V., Crystallite model for flow in nanotube caused by wall soliton, Nanosyst.: Phys., Chem., Math., 2014, vol. 5, no. 3, pp. 400–404.

    Google Scholar 

  22. Belotitskii, V.I., Fokin, A.V., Kumzerov, Y.A., and Sysoeva, A.A., Optical properties of nanowires synthesized in regular nanochannels of porous matrices, Opt. Quantum Electron., 2020, vol. 52, p. 218. https://doi.org/10.1007/s11082-020-2215-z

    Article  CAS  Google Scholar 

  23. Korytkova, E.N., Maslov, A.V., Pivovarova, L.N., Drozdova, I.A., and Gusarov, V.V., Formation of Mg3Si2O5(OH)4 nanotubes under hydrothermal conditions, Glass Phys. Chem., 2004, vol. 30, no 1. p. 51–55. https://doi.org/10.1023/B:GPAC.0000016397.29132.21

    Article  CAS  Google Scholar 

  24. Korytkova, E.N., Pivovarova, L.N., Drozdova, I.A., and Gusarov, V.V., Synthesis of nanotubular nickel hydrosilicates and nickel-magnesium hydrosilicates under hydrothermal conditions, Glass Phys. Chem., 2005, vol. 31, no. 6, pp. 797–802. https://doi.org/10.1007/s10720-005-0127-4

    Article  CAS  Google Scholar 

  25. Korytkova, E.N., Maslov, A.V., Pivovarova, L.N., Polegotchenkova, Yu.V., Povinich, V.F., and Gusarov, V.V., Synthesis of nanotubular Mg3Si2O5(OH)4-Ni3Si2O5(OH)4 silicates at elevated temperatures and pressures, Inorg. Mater., 2005, vol. 41, no. 7, pp. 743–749. https://doi.org/10.1007/s10789-005-0202-1

    Article  CAS  Google Scholar 

  26. Jancar, B. and Suvorov, D., The influence of hydrothermal-reaction parameters on the formation of chrysotile nanotubes, Nanotechnology, 2006, vol. 17, no. 1, pp. 25–29. https://doi.org/10.1088/0957-4484/17/1/005

    Article  CAS  Google Scholar 

  27. Chivilikhin, S.A., Popov, I.Yu., and Gusarov, V.V., Dynamics of Nanotube Twisting in a Viscous Fluid, Dokl. Phys., 2007, vol. 52, no. 1, pp. 60–62. https://doi.org/10.1134/S1028335807010156

    Article  CAS  Google Scholar 

  28. Piperno, S., Kaplan-Ashiri, I., Cohen, S.R., Popovitz-Biro, R., Wagner, H.D., Tenne, R., Foresti, E., Lesci, I.G., and Roveri, N., Characterization of geoinspired and synthetic chrysotile nanotubes by atomic force microscopy and transmission electron microscopy, Adv. Funct. Mater., 2007, vol. 17, no. 16, pp. 3332–3338. https://doi.org/10.1002/adfm.200700278

    Article  CAS  Google Scholar 

  29. Korytkova, E.N., Pivovarova, L.N., Semenova, O.E., Drozdova, I.A., Povinich, V.F., and Gusarov, V.V., Hydrothermal synthesis of nanotubular Mg–Fe hydrosilicate, Russ. J. Inorg. Chem., 2007, vol. 52, no. 3, pp. 338–344. https://doi.org/10.1134/S0036023607030084

    Article  Google Scholar 

  30. Korytkova, E.N., Pivovarova, L.N., Drozdova, I.A., and Gusarov, V.V., Hydrothermal synthesis of nanotubular Co–Mg hydrosilicates with the chrysotile structure, Russ. J. Gen. Chem., 2007, vol. 77, no. 10, pp. 1669–1676. https://doi.org/10.1134/S1070363207100039

    Article  CAS  Google Scholar 

  31. Ogorodova, L.P., Kiseleva, I.A., Korytkova, E.N., Maslennikova, T.P., and Gusarov, V.V., The synthesis and thermochemical study of (Mg,Fe)3Si2O5(OH)4 nanotubes, Russ. J. Phys. Chem., 2010, vol. 84, no. 1, pp. 44–47. https://doi.org/10.1134/S0036024410010097

    Article  CAS  Google Scholar 

  32. Korytkova, E.N. and Pivovarova, L.N., Hydrothermal synthesis of nanotubes based on (Mg,Fe,Co,Ni)3Si2O5(OH)4 hydrosilicates, Glass Phys. Chem., 2010, vol. 36, no. 1, pp. 53–60. https://doi.org/10.1134/S1087659610010104

    Article  CAS  Google Scholar 

  33. Krasilin, A.A., Suprun, A.M., and Gusarov, V.V., Influence of component ratio in the compound (Mg,Fe)3Si2O5(OH)4 on the formation of nanotubular and platelike particles, Russ. J. Appl. Chem., 2013, vol. 86, no. 11, pp. 1633–1637. https://doi.org/10.1134/S1070427213110013

    Article  CAS  Google Scholar 

  34. Krasilin, A.A., Suprun, A.M., Nevedomskii, V.N., and Gusarov, V.V., Formation of conical (Mg,Ni)3Si2O5(OH)4 nanoscrolls, Dokl. Phys. Chem., 2015, vol. 460, no. 2, pp. 42–44. https://doi.org/10.1134/S0012501615020049

    Article  CAS  Google Scholar 

  35. Krivovichev, S.V., Kahlenberg, V., Tananaev, I.G., Kaindl, R., Mersdorf, E., and Myasoedov, B.F., Highly porous uranyl selenate nanotubules, J. Am. Chem. Soc., 2005, vol. 127, no. 4, pp. 1072–1073. https://doi.org/10.1021/ja0436289

    Article  CAS  PubMed  Google Scholar 

  36. Krivovichev, S.V., Kahlenberg, V., Kaindl, R., Mersdorf, E., Tananaev, I.G., and Myasoedov, B.F., Nanoscale tubules in uranyl selenates, Angew. Chem., Int. Ed., 2005, vol. 44, no. 7, pp. 1134–1136. https://doi.org/10.1002/anie.200462356

    Article  CAS  Google Scholar 

  37. Krivovichev, S.V. and Kahlenberg, V., Synthesis and crystal structure of Zn2[(UO2)3(SeO4)5](H2O)17, J. Alloys Compd., 2005, vol. 389, nos. 1–2, pp. 55–60. https://doi.org/10.1016/j.jallcom.2004.08.019

    Article  CAS  Google Scholar 

  38. Cradwick, P.D.G., Farmer, V.C., Russell, J.D., Masson, C.R., Wada, K., and Yoshinaga, N., Imogolite, a hydrated aluminium silicate of tubular structure, Nat. Phys. Sci., 1972, vol. 240, pp. 187–189. https://doi.org/10.1038/physci240187a0

    Article  CAS  Google Scholar 

  39. Farmer, V.C., Fraser, A.R., and Tait, J.M., Synthesis of imogolite: a tubular aluminium silicate polymer, J. Chem. Soc., Chem. Commun., 1977, vol. 12, pp. 462–463. https://doi.org/10.1039/C39770000462

    Article  Google Scholar 

  40. Bloise, A., Barrese, E., and Apollaro, C., Hydrothermal alteration of Ti-doped forsterite to chrysotile and characterization of the resulting chrysotile fibers, Neues Jahrb. Mineral., Abh., 2009, vol. 185, pp. 297–304. https://doi.org/10.1127/0077-7757/2009/0130

    Article  CAS  Google Scholar 

  41. Maslennikova, T.P. and Gatina, E.N., Hydrothermal synthesis of Ti-doped nickel hydrosilicates of various morphologies, Russ. J. Appl. Chem., 2018, vol. 91, no. 2, pp. 286–291. https://doi.org/10.1134/S1070427218020179

    Article  CAS  Google Scholar 

  42. Yuan, P., Tan, D., and Annabi-Bergaya, F., Properties and applications of halloysite nanotubes: recent research advances and future prospects, Appl. Clay Sci., 2015, vol. 112-113, pp. 75–93. https://doi.org/10.1016/j.clay.2015.05.001

    Article  CAS  Google Scholar 

  43. Vezentsev, A.I., Neiman, S.M., and Gudkova, E.A., Transformations and changes in properties of chrysotile asbestos under the effect of various factors, Stroit. Mater., 2006, vol. 6, pp. 104–105.

    Google Scholar 

  44. White, R.D., Bavykin, D.V., and Walsh, F.C., Spontaneous scrolling of kaolinite nanosheets into halloysite nanotubes in an aqueous suspension in the presence of GeO2, J. Phys. Chem. C, 2012, vol. 116, pp. 8824–8833. https://doi.org/10.1021/jp300068t

    Article  CAS  Google Scholar 

  45. Krasilin, A.A. and Khrapova, E.K., Effect of hydrothermal treatment conditions on formation of nickel hydrogermanate with platy morphology, Russ. J. Appl. Chem., 2017, vol. 90, no. 1, pp. 25–30. https://doi.org/10.1134/S1070427217010049

    Article  Google Scholar 

  46. Pauling, L., The structure of the chlorites, Proc. Natl. Acad. Sci. USA, 1930, vol. 16, pp. 578–582. https://doi.org/10.1073/pnas.16.9.578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Roy, D.M. and Roy, R., An experimental study of the formation and properties of synthetic serpentines and related layer silicate minerals, Am. Mineral., 1954, vol. 39, nos. 11–12, pp. 957–975.

    CAS  Google Scholar 

  48. Yada, K., Study of chrysotile asbestos by a high resolution electron microscope, Acta Crystallogr., 1967, vol. 23, no. 5, pp. 704–707. https://doi.org/10.1107/S0365110X67003524

    Article  CAS  Google Scholar 

  49. Yada, K., Study of microstructure of chrysotile asbestos by high-resolution electron microscopy, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1971, vol. 27, no. 6, pp. 659–664. https://doi.org/10.1107/S0567739471001402

    Article  CAS  Google Scholar 

  50. Falini, G., Foresti, E., Gazzano, M., Gualtieri, A.F., Leoni, M., Lesci, I.G., and Roveri, N., Tubular-shaped stoichiometric chrysotile nanocrystals Chem.– Eur. J., 2004, vol. 10, no. 12, pp. 3043–3049. https://doi.org/10.1002/chem.200305685

    Article  CAS  PubMed  Google Scholar 

  51. Lafay, R., Montes-Hernandez, G., Janots, E., Chiriac, R., Findling, N., and Toche, F., Nucleation and growth of chrysotile nanotubes in H2SiO3/MgCl2/NaOH medium at 90 to 300°C, Chem.–Eur. J., 2013, vol. 19, no. 17, pp. 5417–5424. https://doi.org/10.1002/chem.201204105

    Article  CAS  PubMed  Google Scholar 

  52. Krasilin, A.A., Almjasheva, O.V., and Gusarov, V.V., Effect of the structure of precursors on the formation of nanotubular magnesium hydrosilicate, Inorg. Mater., 2011, vol. 47, no. 10, pp. 1111–1115.

    Article  CAS  Google Scholar 

  53. Maslennikova, T.P., Korytkova, E.N., and Pivovarova, L.N., Hydrothermal synthesis of Al2Si2O5(OH)4·2H2O nanotubes with the halloysite structure, Fiz. Khim. Stekla. Pis’ma Zh., 2012, vol. 38, no. 6, pp. 890–893.

    Google Scholar 

  54. Krasilin, A.A., Khrapova, E.K., and Maslennikova, T.P., Review: cation doping approach for nanotubular hydrosilicates curvature control and related applications, Crystals, 2020, vol. 10, no. 8, pp. 654–695. https://doi.org/10.3390/cryst10080654

    Article  CAS  Google Scholar 

  55. Krasilin, A.A., Suprun, A.M., Ubyivovk, E.V., and Gusarov, V.V., Morphology vs. chemical composition of single Ni-doped hydrosilicate nanoscroll, Mater. Lett., 2016, vol. 171, pp. 68–71. https://doi.org/10.1016/j.matlet.2016.01.152

    Article  CAS  Google Scholar 

  56. Krasilin, A.A., Khrapova, E.K., Nomine, A., Ghanbaja, J., Belmonte, T., and Gusarov, V.V., Cations redistribution along the spiral of Ni-doped phyllosilicate nanoscrolls: energy modelling and STEM/EDS study, ChemPhysChem, 2019, vol. 20, no. 5, pp. 719–726. https://doi.org/10.1002/cphc.201801144

    Article  CAS  PubMed  Google Scholar 

  57. Krasilin, A.A. and Gusarov, V.V., Redistribution of Mg and Ni cations in crystal lattice of conical nanotube with chrysotile structure, Nanosyst.: Phys., Chem., Math., 2017, vol. 8, no. 5, pp. 620–627. https://doi.org/10.17586/2220-8054-2017-8-5-620-627

    Article  CAS  Google Scholar 

  58. Korytkova, E.N., Brovkin, A.S., Maslennikova, T.P., Pivovarova, L.N., and Drozdova, I.A., Influence of the physicochemical parameters of synthesis on the growth of nanotubes of the Mg3Si2O5(OH)4 composition under hydrothermal conditions, Glass Phys. Chem., 2011, vol. 37, no. 2, pp. 161–171. https://doi.org/10.1134/S1087659611020076

    Article  CAS  Google Scholar 

  59. Maslennikova, T.P. and Korytkova, E.N., Influence of synthesis of physicochemical parameters on growth of Ni3Si2O5(OH)4 nanotubes and their filling with solutions of hydroxides and chlorides of alkaline metals, Glass Phys. Chem., 2013, vol. 39, no. 1, pp. 67–72. https://doi.org/10.1134/S1087659613010082

    Article  CAS  Google Scholar 

  60. Korytkova, E.H., Semyashkina, M.P., Maslennikova, T.P., Pivovarova, L.N., Al’myashev, V.I., and Ugolkov, V.L., Synthesis and growth of nanotubes Mg3Si2O5(OH,F)4 composition under hydrothermal conditions, Glass Phys. Chem., 2013, vol. 39, no. 3, pp. 294–300. https://doi.org/10.1134/S1087659613030103

    Article  CAS  Google Scholar 

  61. Skuland, T., Maslennikova, T., Låg, M., Gatina, E., Serebryakova, M., Trulioff, A., Kudryavtsev, I., Klebnikova, N., Kruchinina, I., Schwarze, P.E., and Refsnes, M., Synthetic hydrosilicate nanotubes induce low pro-inflammatory and cytotoxic responses compared to natural chrysotile in lung cell cultures, Basic Clin. Pharmacol. Toxicol., 2020, vol. 126, no. 4, pp. 374–388. https://doi.org/10.1111/bcpt.13341

    Article  CAS  PubMed  Google Scholar 

  62. Proskurina, O.V., Sokolova, A.N., Sirotkin, A.A., Abiev, R.Sh., and Gusarov, V.V., Role of hydroxide precipitation conditions in the formation of nanocrystalline BiFeO3, Russ. J. Inorg. Chem., 2021, vol. 66, no. 2, pp. 163–169. https://doi.org/10.1134/S0036023621020157

    Article  CAS  Google Scholar 

  63. Maslennikova, T.P., Kotova, M.E., Lomakin, M.S., and Ugolkov, V.L., Role of mixing reagent solutions in the formation of morphological features of nanocrystalline particles of magnesium hydroxide and oxide, Russ. J. Inorg. Chem., 2022, vol. 67, no. 6, pp. 809–819. https://doi.org/10.1134/S0036023622060158

    Article  Google Scholar 

  64. Chivilikhin, S.A., Popov, I.Yu., Svitenkov, A.I., Chivilikhin, D.S., and Gusarov, V.V., Formation and evolution of nanoscroll ensembles based on layered-structure compounds, Dokl. Phys., 2009, vol. 54, no. 11, pp. 491–493. https://doi.org/10.1134/S1028335809110044

    Article  CAS  Google Scholar 

  65. Chivilikhin, S.A., Popov, I.Yu., Chivilikhin, D.S., and Gusarov, V.V., Diffusion-controlled growth of a system of nanoscrolls, Izv. Vyssh. Uchebn. Zaved., Fiz., 2010, vol. 53, special issue 3/2 (Multiscale Modeling of Processes and Structures in Nanotechnologies), pp. 201–204.

  66. Krasilin, A.A., Nevedomsky, V.N., and Gusarov, V.V., Comparative energy modeling of multi-walled Mg3Si2O5(OH)4 and Ni3Si2O5(OH)4 nanoscrolls growth, J. Phys. Chem. C, 2017, vol. 121, no. 22, pp. 12495–12502. https://doi.org/10.1021/acs.jpcc.7b03785

    Article  CAS  Google Scholar 

  67. Krasilin, A.A. and Gusarov, V.V., Energy model of radial growth of a nanotubular crystal, Tech. Phys. Lett., 2016, vol. 42, no. 1, pp. 55–58. https://doi.org/10.1134/s1063785016010247

    Article  CAS  Google Scholar 

  68. Roveri, N., Falini, G., Foresti, E., Fracasso, G., Lesci, I., and Sabatino, P., Geoinspired synthetic chrysotile nanotubes, J. Mater. Res., 2006, vol. 21, no. 11, pp. 2711–2725. https://doi.org/10.1557/jmr.2006.0359

    Article  CAS  Google Scholar 

  69. Malkov, A.A., Korytkova, E.N., Maslennikova, T.P., Shtykhova, A.M., and Gusarov, V.V., Effect of heat treatment on structural-chemical transformations in magnesium hydrosilicate Mg3Si2O5(OH)4 nanotubes, Russ. J. Appl. Chem., 2009, vol. 82, no. 12, pp. 2079–2086. https://doi.org/10.1134/S1070427209120015

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The transmission electron microscopy images were obtained by D.A. Kirilenko (Ioffe Institute, St. Petersburg, Russia) using equipment at the Materials Engineering and Diagnosis in Advanced Technologies Federal Shared Research Facilities Center, supported by the Russian Federation Ministry of Science and Higher Education (unique research project identifier no. RFMEFI62117X0018).

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education as part of the state research target for the Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences (theme no. 0081-2022-0008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Maslennikova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslennikova, T.P., Gatina, E.N., Kotova, M.E. et al. Formation of Magnesium Hydrosilicate Nanoscrolls with the Chrysotile Structure from Nanocrystalline Magnesium Hydroxide and Their Thermally Stimulated Transformation. Inorg Mater 58, 1152–1161 (2022). https://doi.org/10.1134/S0020168522110115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522110115

Keywords:

Navigation