Skip to main content
Log in

Calculation of Two-Stage Metal Hydride Hydrogen Compressors Using a Model of Intermetallic Compound–Hydrogen Phase Equilibria

  • Published:
Inorganic Materials Aims and scope

Abstract

The operation of a two-stage metal hydride thermal sorption hydrogen compressor based on LaNi5 or LaNi4.9Sn0.1 (first stage) and La0.5Ce0.5Ni5 (second stage) has been modeled using a semiempirical model of phase equilibria (PCT diagrams) in systems of hydrogen gas and metals or alloys, which ensures realistic extrapolation to beyond experimentally accessible temperature and hydrogen pressure ranges. The results demonstrate that, all other factors being the same, replacing LaNi5 by LaNi4.9Sn0.1 as the hydride-forming material in the first compressor stage ensures a 10% increase in compressor productivity, with a 17% increase in heat consumption. In addition, this change substantially improves compressor operation stability to changes in suction pressure and cooling temperature. The observed effects are attributable to the better stability of the intermetallic hydride, the decrease in the energy loss due to hysteresis, and the increase in the slope of the plateau at low degrees of tin substitution for nickel in LaNi5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. Since standard states refer to a pressure of 1 atm = 101.32501 kPa, all hydrogen pressures in this report are expressed in atmospheres to avoid complications.

REFERENCES

  1. Shpil’rain E.E., Malyshenko S.P., Kuleshov G.G. Vvedenie v vodorodnuyu energetiku (Introduction to Hydrogen Energy Technology), Legasov, V.A., Ed., Moscow: Energoatomizdat, 1984.

    Google Scholar 

  2. Okolie, J.A., Patra, B.R., Mukherjee, A., et al., Futuristic applications of hydrogen in energy, biorefining, aerospace, pharmaceuticals and metallurgy, Int. J. Hydrogen Energy, 2021, vol. 46, pp. 8885–8905. https://doi.org/10.1016/j.ijhydene.2021.01.014

    Article  CAS  Google Scholar 

  3. Rath, R., Kumar, P., Mohanty, S., and Nayak, S.K., Recent advances, unsolved deficiencies, and future perspectives of hydrogen fuel cells in transportation and portable sectors, Int. J. Energy Res., 2019, vol. 43, pp. 8931–8955. https://doi.org/10.1002/er.4795

    Article  Google Scholar 

  4. Filippov, S.P. and Yaroslavtsev, A.B., Hydrogen energy: development prospects and materials, Russ. Chem. Rev., 2021, vol. 90, no. 6, pp. 627–643.https://doi.org/10.1070/RCR5014

    Article  Google Scholar 

  5. Liu, X., Liu, G., Xue, J., et al., Hydrogen as a carrier of renewable energies toward carbon neutrality: state-of-the-art and challenging issues, Int. J. Miner. Metall., 2022, vol. 29, no. 5, pp. 1073–1089. https://doi.org/10.1007/s12613-022-2449-9

    Article  CAS  Google Scholar 

  6. The future of hydrogen: seizing today’s opportunities, Report Prepared by the IEA for the G20, 2019. https://www.nzhydrogen.org/s/IEA-The_Future_of_ Hydrogen.pdf.

  7. Yusaf, T., Laimon, M., Alrefae, W., et al., Hydrogen energy demand growth prediction and assessment (2021–2050) using a system thinking and system dynamics approach, Appl. Sci., 2022, vol. 12, p. 781. https://doi.org/10.3390/app12020781

    Article  CAS  Google Scholar 

  8. Sdanghi, G., Maranzana, G., Celzard, A., and Fierro, V., Review of the current technologies and performances of hydrogen compression for stationary and automotive applications, Renewable Sustainable Energy Rev., 2019, vol. 102, pp. 150–170. https://doi.org/10.1016/j.rser.2018.11.028

    Article  CAS  Google Scholar 

  9. Sdanghi, G., Maranzana, G., Celzard, A., and Fierro, V., Towards non-mechanical hybrid hydrogen compression for decentralized hydrogen facilities, Energies, 2020, vol. 13, p. 3145. https://doi.org/10.3390/en13123145

    Article  CAS  Google Scholar 

  10. Shilov, A.L., Padurets, L.N., and Kuznetsov, N.T., Metal alloys and carbon nanomaterials as potential hydrogen storage materials, Russ. J. Inorg. Mater., 2010, vol. 55, no. 8, pp. 1192–1196. https://doi.org/10.1134/S0036023610080061

    Article  CAS  Google Scholar 

  11. Bürger, I., Dieterich, M., Pohlmann, C., et al., Standardized hydrogen storage module with high utilization factor based on metal hydride-graphite composites, J. Power Sources, 2017, vol. 3342, pp. 970–979. https://doi.org/10.1016/j.jpowsour.2016.12.108

    Article  CAS  Google Scholar 

  12. Chen, Z., Ma, Z., Zheng, J., et al., Perspectives and challenges of hydrogen storage in solid-state hydrides, Chin. J. Chem. Eng., 2021, vol. 29, pp. 1–12. https://doi.org/10.1016/j.cjche.2020.08.024

    Article  CAS  Google Scholar 

  13. Zadorozhnyy, V., Tomilin, I., Berdonosova, E., et al., Composition design, synthesis and hydrogen storage ability of multiprincipal-component alloy TiVZrNbTa, J. Alloys Compd., 2022, vol. 901, p. 163638. https://doi.org/10.1016/j.jallcom.2022.163638

    Article  CAS  Google Scholar 

  14. Verbetsky, V.N., Lushnikov, S.A., and Movlaev, E.A., Interaction of vanadium alloys with hydrogen at high pressures, Inorg. Mater., 2015, vol. 51, no. 8, pp. 779–782. https://doi.org/10.1134/S0020168515080191

    Article  CAS  Google Scholar 

  15. Stamatakis, E., Zoulias, E., Tzamalis, G., et al., Metal hydride hydrogen compressors: current developments & early markets, Renewable Energy, 2018, vol. 127, pp. 850–862. https://doi.org/10.1016/j.renene.2018.04.073

    Article  CAS  Google Scholar 

  16. Corgnale, C., Bowman, R.C., Jr., and Motyka, T., Thermal hydrogen compression based on metal hydride materials, Advances in Sustainable Energy, Gao, Y. et al., Eds., New York: Springer, 2021, pp. 171–192. https://doi.org/10.1007/978-3-030-74406-9_6

    Book  Google Scholar 

  17. Lototskyy, M. and Linkov, V., Thermally driven hydrogen compression using metal hydrides, Int. J. Energy Res., 2022, vol. 46, pp. 22049–22069.https://doi.org/10.1002/er.8189

  18. Galvis, E.A.R., Leardini, F., Ares, J.R., et al., Simulation and design of a three-stage metal hydride hydrogen compressor based on experimental thermodynamic data, Int. J. Hydrogen Energy, 2018, vol. 43, pp. 6666–6676. https://doi.org/10.1016/j.ijhydene.2018.02.052

    Article  CAS  Google Scholar 

  19. Lototskyy, M.V., Yartys, V.A., Tarasov, B.P., et al., Modelling of metal hydride hydrogen compressors from thermodynamics of hydrogen–metal interactions viewpoint: Part I. Assessment of the performance of metal hydride materials, Int. J. Hydrogen Energy, 2021, vol. 46, pp. 2330–2338.https://doi.org/10.1016/j.ijhydene.2020.10.090

    Article  CAS  Google Scholar 

  20. Lototskyy, M.V., Yartys, V.A., Tarasov, B.P., et al., Modelling of metal hydride hydrogen compressors from thermodynamics of hydrogen–metal interactions viewpoint: Part II. Assessment of the performance of metal hydride compressors, Int. J. Hydrogen Energy, 2021, vol. 46, pp. 2339–2350. https://doi.org/10.1016/j.ijhydene.2020.10.080

    Article  CAS  Google Scholar 

  21. Lototskyy, M.V., New model of phase equilibria in metal–hydrogen systems: features and software, Int. J. Hydrogen Energy, 2016, vol. 41, pp. 2739–2761. https://doi.org/10.1016/j.ijhydene.2015.12.055

    Article  CAS  Google Scholar 

  22. Tarasov, B.P., Bocharnikov, M.S., Yanenko, Yu.B., et al., Metal hydride hydrogen compressors for energy storage systems: layout features and results of long-term tests, J. Phys.: Energy, 2020, vol. 2, p. 024005. https://doi.org/10.1088/2515-7655/ab6465

    Article  CAS  Google Scholar 

  23. Bjurstrom, H., Suda, S., and Lewis, D., A numerical expression for the P–C–T properties of metal hydrides, J. Less-Common Met., 1987, vol. 130, pp. 365–370. https://doi.org/10.1016/0022-5088(87)90130-5

    Article  Google Scholar 

  24. Jemni, A. and Ben Nasrallah, S., Study of two-dimensional heat and mass transfer during absorption in a metal–hydrogen reactor, Int. J. Hydrogen Energy, 1995, vol. 20, pp. 43–52. https://doi.org/10.1016/0360-3199(93)E0007-8

    Article  CAS  Google Scholar 

  25. Payaa, J., Linder, M., Laurien, E., and Corberan, J.M., Mathematical models for the P–C–T characterization of hydrogen absorbing alloys, J. Alloys Compd., 2009, vol. 484, pp. 190–195. https://doi.org/10.1016/j.jallcom.2009.05.069

    Article  CAS  Google Scholar 

  26. Oliva, D.G., Fuentes, M., Borzone, E.M., et al., Hydrogen storage on LaNi5 − xSnx. Experimental and phenomenological model-based analysis, Energy Convers. Manage., 2018, vol. 173, pp. 113–122. https://doi.org/10.1016/j.enconman.2018.07.041

    Article  CAS  Google Scholar 

  27. Brodowsky, H. and Yasuda, K., From partition function to phase diagram – statistical thermodynamics of the LaNi5–H system, Z. Phys. Chem., 1993, vol. 179, pp. 45–55. https://doi.org/10.1524/zpch.1993.179.Part_1_2.045

    Article  CAS  Google Scholar 

  28. Ledovskikh, A., Danilov, D., Rey, W.J.J., and Notten, P.H.L., Modeling of hydrogen storage in hydride-forming materials: statistical thermodynamics, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 73, p. 014106. https://doi.org/10.1103/PhysRevB.73.014106

    Article  CAS  Google Scholar 

  29. Kierstead, H.A., A theory of multiplateau hydrogen absorption isotherms, J. Less-Common Met., 1980, vol. 71, pp. 303–309. https://doi.org/10.1016/0022-5088(80)90213-1

    Article  CAS  Google Scholar 

  30. Kierstead, H.A., A generalized theory of multiplateau hydrogen absorption isotherms, J. Less-Common Met., 1982, vol. 84, pp. 253–261. https://doi.org/10.1016/0022-5088(82)90150-3

    Article  CAS  Google Scholar 

  31. Fang, S., Zhou, Z., Zhang, J., et al., Two mathematical models for the hydrogen storage properties of AB2 type alloys, J. Alloys Compd., 1999, vol. 293-295, pp. 10–13. https://doi.org/10.1016/S0925-8388(99)00380-1

    Article  CAS  Google Scholar 

  32. Beeri, O., Cohen, D., Gavra, Z., et al., Thermodynamic characterization and statistical thermodynamics of the TiCrMn–H2 (D2) system, J. Alloys Compd., 2000, vol. 299, pp. 217–226. https://doi.org/10.1016/S0925-8388(99)00798-7

    Article  CAS  Google Scholar 

  33. Ledovskikh, A.V., Danilov, D.L., Vliex, M., and Notten, P.H.L., Modeling and experimental verification of the thermodynamic properties of hydrogen storage materials, Int. J. Hydrogen Energy, 2016, vol. 41, pp. 3904–3918. https://doi.org/10.1016/j.ijhydene.2015.11.038

    Article  CAS  Google Scholar 

  34. Zepon, G., Silva, B.H., Zlotea, C., et al., Thermodynamic modelling of hydrogen-multicomponent alloy systems: calculating pressure–composition–temperature diagrams, Acta Mater., 2021, vol. 215, p. 117070. https://doi.org/10.1016/j.actamat.2021.117070

    Article  CAS  Google Scholar 

  35. Tarasov, B.P., Bocharnikov, M.S., Yanenko, Yu.B., et al., Cycling stability of RNi5 (R = La, La + Ce) hydrides during the operation of metal hydride hydrogen compressor, Int. J. Hydrogen Energy, 2018, vol. 43, pp. 4415–4427. https://doi.org/10.1016/j.ijhydene.2018.01.086

    Article  CAS  Google Scholar 

  36. Lototskyy, M., Klochko, Ye., Davids, M.W., et al., Industrial-scale metal hydride hydrogen compressors developed at the South African Institute for Advanced Materials Chemistry, Mater. Today: Proc., 2018, vol. 5, pp. 10514–10523. https://doi.org/10.1016/j.matpr.2017.12.383

    Article  CAS  Google Scholar 

  37. Crivello, J.C. and Gupta, M., Electronic properties of LaNi4.75Sn0.25, LaNi4.5M0.5 (M = Si, Ge, Sn), LaNi4.5Sn0.5H5, J. Alloys Compd., 2003, vols. 356–357, pp. 151–155. https://doi.org/10.1016/S0925-8388(02)01224-0

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, mega grant, agreement no. 075-15-2022-1126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. P. Tarasov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lototskyy, M.V., Fokina, E.E., Bessarabskaya, I.E. et al. Calculation of Two-Stage Metal Hydride Hydrogen Compressors Using a Model of Intermetallic Compound–Hydrogen Phase Equilibria. Inorg Mater 58, 1227–1234 (2022). https://doi.org/10.1134/S0020168522110097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522110097

Keywords:

Navigation