Skip to main content
Log in

General Aspects of the Synthesis of a Fluorophlogopite-Based Crystalline Mica Material under Atmospheric Conditions

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied general aspects of combustion of mixtures intended for synthesis of fluorophlogopite-based mica and differing in magnesium oxide content. Synthesis was conducted under atmospheric conditions with the use of mineral raw materials. SiO2 + Mg + MgO + Al + Na3AlF6 + KClO4 starting mixtures differing in composition were burnt in quartz beakers 23 mm in diameter and 60–70 mm in height. We examined the effect of magnesium oxide concentration in the starting mixture on the combustion speed and temperature and the amount of material ejected from the reaction mixture (weight loss). The results demonstrate that increasing the amount of MgO in the starting mixture to ~19% reduces the combustion speed from 3.5 to 0.5 mm/s and lowers the combustion temperature from 1400 to 700°C. In addition, the weight loss of the reaction mixture drops to 2%. We have studied the structure and composition of the synthesized material and determined the starting-mixture composition ensuring synthesis of a fluorophlogopite-based material. The composition of the synthesized potassium sodium fluorophlogopite-based material is КMg2.75Si3.5Al0.5O10F2–Na4Mg6Si4Al4O20F4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Leizerzon, M.S., Sinteticheskaya slyuda (Synthetic Mica), Moscow: Gosenergoizdat., 1962.

  2. Yamzin, I.I., Synthetic mica, Zap. Vsesoyuzn. Mineral. O–va., 1952, vol. 81, no. 3, pp. 224–231.

    CAS  Google Scholar 

  3. Lipovskii, I.E. and Dorofeev, V.A., Osnovy petrurgii (Principles of Stone Casting), Moscow: Metallurgiya, 1972, pp. 24–27, 204–205.

  4. Tresvyatskii, S.G., Parkhomenko, M.A., and Kondratenko, A.D., Research in the field of the preparation of microcrystalline materials with a mica-like structure, Izv. Akad. Nauk SSSR, Neorg. Mater., 1965, vol. 1, no. 4, pp. 449–459.

    CAS  Google Scholar 

  5. Khan, B.Kh., Current issues in the production and use of stone castings in national economy, in Problemy kamennogo lit’ya (Current Issues in Stone Casting), Kiev: Naukova Dumka, 1975, issue 3, pp. 3–22.

  6. Ruzhentseva, M.K., Malyavin, A.G., Dugovskaya, E.S., and Kondratenko, A.D., Vzaimodeistvie litogo slyudokristallicheskogo materiala s rasplavami tsvetnykh metallov (Interaction of a Cast Crystalline Mica Material with Molten Nonferrous Metals), Kiev: Naukova Dumka, 1975, issue 3, pp. 182–188.

  7. Muzhzhavlev, K.D., Shchegolev, B.H., Afanas’eva, A.S., Basil’ev, A.V., and Ryabukhin, Yu.M., A new principle of electrode arrangement in diaphragmless magnesium cells, Tsvetn. Met., 1980, no. 1, pp. 76–78.

  8. Ignatov, M.N., Shundikov, E.N., Shundikov, N.A., Nikolaev, M.M., and Ignatova, A.M., Technological process for production of fluorophlogopite castings, in Sovremennye organizatsionnye, tekhnologicheskie i konstruktorskie metody upravleniya kachestvom (Modern Organizational, Technological, and Design Quality Control Methods), Perm: Perm. Gos. Tekh. Univ., 2006, pp. 47–52.

  9. Ignatova, A.M., Nikolaev, M.M., Khanov, A.M., and Shundikov, N.A., Production of fluorophlogopite and its application in nonferrous metallurgy, Sbornik dokladov I Mezhdunarodnoi konferentsii “Tsvetnye metally Sibiri” (Proc. I Int. Conf. Nonferrous Metals of Siberia), Krasnoyarsk, 2009, pp. 415–416.

  10. Ignatova, A.M. and Yudin, M.V., Industrial testing of magnesium electrolyzers lined with a cast fluorophlogopite-type crystalline mica material, Vestn. PNIPU. Khim. Tekhnol. Biotekhnol., 2019, no. 3, pp. 109–129. https://doi.org/10.15593/2224-9400/2019.3.10

  11. Yudin, M.V., Development of technology and compositions for the preparation of a cast crystalline mica material corrosion-resistant in alkali–magnesia melts, Cand. Sci. (Eng.) Dissertation, Tomsk. 2020.

  12. Putilin, Yu.M., Belyakova, Yu.A., Golenko, V.P., Gorbunov, L.V., Davydchenko, A.G., Ivanov, V.F., Polyanskii, E.V., Samoilovich, M.I., Smirnova, S.A., Shabaltai, A.A., Yarotskaya, E.G., and Yarotskii, V.G., Sintez mineralov (Synthesis of Minerals), Moscow: Nedra, 1987, vol. 2, pp. 5–81.

    Google Scholar 

  13. Golenko, V.P. and Matveev, S.I., Pyrogenic synthesis of fluorophlogopite from natural mica, Izv. Akad. Nauk SSSR, Neorg. Mater., 1979, vol. 15, no. 11, pp. 2045–2046.

    CAS  Google Scholar 

  14. Yudin, M.V., Nikolaev, M.M., Ignatova, A.M., and Ignatov, M.N., Functional and technological scheme for production of fluorophlogopite articles, Vestn. PNIPU. Mashinostr., Materialoved., 2017, vol. 19, no. 2, pp. 118–132. https://doi.org/10.15593/2224-9877/2017.2.09

    Article  Google Scholar 

  15. Gordienko, P.S., Yarusova, S.B., Bulanova, S.B., Shabalin, I.A., and Kuryavyi, V.G., Use of a synthetic aluminosilicate for sorption of cesium ions, Khim. Tekhnol., 2013, vol. 14, no. 3, pp. 185–192.

    Google Scholar 

  16. Gordienko, P.S., Yarusova, S.B., Shabalin, I.A., Zheleznov, V.V., Zarubina, N.V., and Bulanova, S.B., Sorption properties of nanostructured potassium aluminosilicate, Radiokhimiya, 2014, vol. 56, no. 6, pp. 518–523.

    Google Scholar 

  17. Gordienko, P.S., Yarusova, S.B., Shabalin, I.A., and Somova, S.N., Sorption of Cs+ ions from seawater by a nanostructured aluminosilicate sorbent, IV Mezhdunaroanaya konferentsiya po khimicheskoi tekhnologii (IV Int. Conf. on Chemical Technology), Erevan, 2015, pp. 31–34.

  18. Uvarov, V.I., Loryan, V.E., Kachin, A.R., Borovinskaya, I.P., Shustov, V.S., Tsodikov, M.V., and Fedotov, A.S., Production of membranes based on materials with a mica-like structure using combustion processes, in Neravnovesnye protsessy (Nonequilibrium Processes), vol. 1: Kinetika i plazma (Kinetics and Plasma), Moscow: Torus Press, 2018, pp. 287–293. https://doi.org/10.30826/NEPCAP2018-1-32

  19. Uvarov, V.I., Alymov, M.I., Kachin, A.R., Loryan, V.E., Shustov, V.S., Fedotov, A.S., and Tsodikov, M.V., SHS membranes based on materials of mica-like structure, IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 558, p. 012053. https://doi.org/10.1088/1757-899X/558/1/012053

  20. Loryan, V.E., Kachin, A.R., and Uvarov, V.I., Combustion synthesis of fluorophlogopite-based crystalline mica materials with the use of mineral raw materials and aluminum production waste, Perspekt. Mater., 2017, no. 2, pp. 72–78.

  21. Kachin, A.R., Loryan, V.E., and Khomenko, N.Yu., Combustion synthesis of KMg2.75Si3.5Al0.5O10F2–Na4Mg6Si4Al4O20F4 composite from SiO2–Mg–MgO–Al–Na3AlF6–KClO4 mixtures in open air: influence of MgO addition, Int. J. Self-Propag. High-Temp. Synth., 2020, vol. 29, no. 4, pp. 238–240.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this work, we used equipment at the Distributed Shared Research Facilities Center, Institute of Structural Macrokinetics and Materials Science, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. R. Kachin or V. E. Loryan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kachin, A.R., Loryan, V.E. General Aspects of the Synthesis of a Fluorophlogopite-Based Crystalline Mica Material under Atmospheric Conditions. Inorg Mater 58, 1197–1202 (2022). https://doi.org/10.1134/S0020168522110061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522110061

Keywords:

Navigation