Skip to main content
Log in

Effect of Heat Treatment of Molten 6Bi2O3⋅SiO2 on the Phase Composition and Microstructure of Its Solidification Products

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied the effect of heat treatment (isothermal holding in the temperature zone C, initial cooling temperature, and cooling rate) of a melt with the composition 85.7 mol % Bi2O3 + 14.3 mol % SiO2 (6 : 1) on the phase composition and microstructure of the forming crystals and found conditions for crystallization of a δ-Bi2O3-based metastable solid solution (δ*) at high melt cooling rates. The results demonstrate that low melt cooling rates lead to crystallization of the δ*-phase and an α-Bi2O3-based solid solution, followed by partial or complete eutectoid decomposition of dendritic δ*-phase crystals into a mixture of metastable phases, containing β*-Bi2O3 and η-Bi2SiO5 as well. Raising the melt cooling rate limits both the formation of secondary phases and eutectoid decomposition. The results we obtained make it possible to control the formation of polycrystalline Bi12SiO20 and δ-Bi2O3 upon 6Bi2O3⋅SiO2 melt solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Vohl, P., Nisenson, P., and Oliver, D.S., Real-time incoherent-to-coherent optical converter, IEEE Trans. Electron Devices, 1973, vol. 20, no. 11, pp. 1032–1037. https://doi.org/10.1109/T-ED.1973.17786

    Article  Google Scholar 

  2. White, J.O. and Yariv, A., Real-time image processing via four-wave mixing in a photorefractive medium, Appl. Phys. Lett., 1980, vol. 37, no. 1, pp. 5–7.

    Article  CAS  Google Scholar 

  3. Burattini, E., Capuccio, G., Ferrari, M.C., Grandolfo, M., Vecchia, P., and Efendiev, Sh.M., Medium infrared transmittance and reflectance spectra of Bi12GeO20, Bi12SiO20, and Bi12TiO20 single crystals, J. Opt. Soc. Am. B: Opt. Phys., 1988, vol. 5, no. 3, pp. 714–720. https://doi.org/10.1364/JOSAB.5.000714

    Article  CAS  Google Scholar 

  4. Shlegel’, V.N. and Pantsurkin, D.S., Growth of Bi12GeO20 and Bi12SiO20 crystals by the low-thermal gradient Czochralski technique, Crystallogr. Rep., 2011, vol. 56, no. 2, pp. 339–344.

    Article  Google Scholar 

  5. Mori, M., Yagai, Y., Yatagai, T., and Watanabe, M., Optical learning neural network with a Pockels readout optical modulator, Appl. Opt., 1998, vol. 37, no. 14, pp. 2852–2857. https://doi.org/10.1364/AO.37.002852

    Article  CAS  PubMed  Google Scholar 

  6. Jeong, B.-J., Joung, M.-R., Kweon, S.-H., Kim, J.-S., Nahma, S., Choi, J.-W., and Hwang, S.-J., Microstructure and microwave dielectric properties of Bi12SiO20 ceramics, Mater. Res. Bull., 2012, no. 47, pp. 4510–4513.

  7. Demin, A.N., Smyslov, V.I., and Klement’ev, A.T., Metrological analysis of fiber-optic current sensors based on Bi12SiO20 and Bi12GeiO20 crystals with cubic symmetry, Izmer. Monitoring. Upravl. Kontrol’, 2016, no. 2 (16). pp. 28–34.

  8. Pavlenko, A.V., Cherkashina, N.I., Yastrebinskii, R.N., and Noskov, A.V., Calculation of transmission coefficients for fast electrons passing through a bismuth silicate-loaded polyimide polymer composite material, Vopr. At. Nauki Tekh., 2017, no. 5 (111), pp. 21–26.

  9. Xiong, Y., Dang, B., Wang, C., Wang, H., Zhang, S., Sun, Q., and Xu, X., Cellulose fibers constructed convenient recyclable 3D graphene–formicary-like δ-Bi2O3 aerogels for the selective capture of iodide, ACS Appl. Mater., 2017, vol. 9, no. 24, pp. 20554–20560. https://doi.org/10.1021/acsami.7b03516

    Article  CAS  Google Scholar 

  10. Liu, L., Chen, N., Lei, Y., Xue, X., Li, L., Wang, J., Komarneni, S., Zhu, H., and Yang, D., Micro-nanostructured δ-Bi2O3 with surface oxygen vacancies as superior adsorbents for ions, J. Hazard. Mater., 2018, vol. 360, pp. 279–287. https://doi.org/10.1016/j.jhazmat.2018.08.025

    Article  CAS  PubMed  Google Scholar 

  11. Zhereb, V.P. and Skorikov, V.M., Effect of metastable phases on the structural perfection of single crystals of stable bismuth oxide compounds, Inorg. Mater., 2003, vol. 39, no. 11, pp. 1181–1187.

    Article  CAS  Google Scholar 

  12. Novoselov, I.I., Makarov, I.V., Fedotov, V.A., Ivannikova, N.V., and Shubin, Yu.V., Synthesis of a bismuth germanium oxide source material for Bi4Ge3O12 crystal growth, Inorg. Mater., 2013, vol. 49, no. 4, pp. 412–415. https://doi.org/10.1134/S0020168513030138

    Article  CAS  Google Scholar 

  13. Pantsurkin, D.S., A systematic study of the shape and quality of bismuth germanate and bismuth silicate crystals grown by the low thermal gradient Czochralski technique, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Novosibirsk: Nikolaev Inst. of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 2011.

  14. Zhang, H., Feng, Y., Jia, S., Jiang, D., and Zhan, Q., Enhancing the photocatalytic performance of Bi12SiO20 by in situ grown Bi2O2CO3 and Bi through two-step light irradiation method, Appl. Surf. Sci., 2020, no. 520, p. 146355. https://doi.org/10.1016/j.apsusc.2020.146355

  15. Zhang, J., Han, Q., Wang, X., Zhu, J., and Duan, G., Synthesis of δ-Bi2O3 microflowers and nanosheets using CH3COO(BiO) self-sacrifice precursor, Mater. Lett., 2016, no. 162, pp. 218–221. https://doi.org/10.1016/j.matlet.2015.10.024

  16. Vodyankin, A.A., Ushakov, I.P., Belik, Yu.A., and Vodyankina, O.V., Synthesis and photocatalytic properties of materials based on bismuth silicates, Kinet. Catal., 2017. vol. 58, no. 5, pp. 593–600. https://doi.org/10.1134/S0023158417050238

    Article  CAS  Google Scholar 

  17. Yin, Y., Li, F., Zhan, Q., Jiang, D., and Chen, R., Synthesis of δ-Bi2O3/Bi2MoO6 composites with enhanced photocatalytic activity by hydrothermal method, Mater. Res. Bull., 2018, vol. 103, pp. 47–54. https://doi.org/10.1016/j.materresbull.2018.03.021

    Article  CAS  Google Scholar 

  18. Jeong, B.-J., Joung, M.-R., Kweon, S.-H., Kim, J.-S., Nahm, S., Choi, J.-W., and Hwang, S.-J., Microstructures and microwave dielectric properties of Bi2O3-deficient Bi12SiO20 ceramics, J. Am. Ceram. Soc., 2013, vol. 96, no. 7, pp. 2225–2229. https://doi.org/10.1111/jace.12323

    Article  CAS  Google Scholar 

  19. Vasconcelos, I.F., Pimenta, M.A., and Sombra, A.S.B., Optical properties of Bi12SiO20 (BSO) and Bi12TiO20 (BTO) obtained by mechanical alloying, J. Mater. Sci., 2001, no. 36, pp. 587–592.

  20. Lu, J., Wang, X., and Jiang, H., Synthesis of pure Bi12SiO20 powder by molten salt method, Appl. Mech. Mater., 2012, vols. 182–183, pp. 52–56.

    Article  Google Scholar 

  21. Xu, J. and Liu, J., Facet-selective epitaxial growth of δ-Bi2O3 on ZnO nanowires, Chem. Mater., 2016, no. 28, pp. 8141–8148. https://doi.org/10.1021/acs.chemmater.6b01739

  22. Zhu, S., Lu, L., Zhao, Z., Wang, T., Liu, X., Zhang, H., Dong, F., and Zhang, Y., Mesoporous Ni-doped δ-Bi2O3 microspheres for enhanced solar-driven photocatalysis: a combined experimental and theoretical investigation, J. Phys. Chem. C, 2017, vol. 121, no. 17, pp. 9394–9401. https://doi.org/10.1021/acs.jpcc.7b01608

    Article  CAS  Google Scholar 

  23. Wang, X., Jayathilake, R., Taylor, D.D., Rodriguez, E.E., and Zachariah, M.R., Study of C/doped δ-Bi2O3 redox reactions by in-operando synchrotron XX-ray diffraction: bond energy/oxygen vacancy and reaction kinetics relationships, J. Phys. Chem. C, 2018, vol. 122, no. 16, pp. 8796–8803. https://doi.org/10.1021/acs.jpcc.8b01402

    Article  CAS  Google Scholar 

  24. Fan, H.T., Pan, S.S., Teng, X.M., Ye, C., Li, G.H., and Zhang, L.D., δ-Bi2O3 thin films prepared by reactive sputtering: fabrication and characterization, Thin Solid Films, 2006, no. 513, pp. 142–147. https://doi.org/10.1016/j.tsf.2006.01.074

  25. Kargin, Yu.F., Zhereb, V.P., and Skorikov, V.M., Stable and metastable phase equilibria in the Bi2O3–SiO2 system. Zh. Neorg. Khim., 1991, vol. 36, no. 10, pp. 2611–2616.

    CAS  Google Scholar 

  26. Zhereb, V.P., Metastabil’nye sostoyaniya v oksidnykh vismutsoderzhashchikh sistemakh (Metastable States in Bismuth-Containing Oxide Systems), Moscow: MAKS Press, 2003, p. 162.

  27. Zhereb, V.P., Physicochemical investigation of metastable phase equilibria in the Bi2O3–MO2 (M = Si, Ge, Ti) systems, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Moscow: Kurnakov Inst. of General and Inorganic Chemistry, USSR Acad. Sci., 1980.

  28. Bermeshev, T.V., Zhereb, V.P., Tas-Ool, R.N., Mazurova, E.V., and Metelitsa, S.I., Phase separation in the Bi2O3–SiO2 system: effect of melt cooling conditions on the phase composition and microstructure of solidification products, Russ. Chem. Bull., 2021, vol. 70, no. 8, pp. 1462–1470.

    Article  CAS  Google Scholar 

  29. Voskresenskaya, E.N., Interaction of platinum with molten bismuth-containing oxides, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Moscow: Kurnakov Inst. of General and Inorganic Chemistry, USSR Academy of Sciences, 1983.

  30. Schwartz, K.B. and Prewitt, C.T., Structural and electronic properties of binary and ternary platinum oxides, J. Phys. Chem. Solids, 1984, vol. 45, no. 1, pp. 1–21.

    Article  CAS  Google Scholar 

  31. Tsang, C.-F., Meen, J.K., and Elthon, D., Phase equilibria of the bismuth oxide–copper oxide system in oxygen at 1 atm, J. Am. Ceram. Soc., 1994, vol. 77, no. 12, pp. 3119–3124.

    Article  CAS  Google Scholar 

  32. Dankov, P.D., Mechanism of phase transformations from the viewpoint of the orientation/size matching principle, Izv. Sekt. Fiz.-Khim. Anal. Akad. Nauk SSSR, 1943, vol. 16, no. 1, pp. 82–96.

    CAS  Google Scholar 

  33. Konobeevskii, S.T., On the nature of the bonds in metals, in Doklady na soveshchanii po teorii metallicheskikh splavov (Reports at a Conference on the Theory of Metallic Alloys), Moscow: Mosk. Gos. Univ., 1952, p. 4.

  34. Bermeshev, T.V., Zhereb, V.P., Yasinskiy, A.S., Mazurova, E.V., Bundin, M.P., Samoilo, A.S., Bespalov, V.M., Merdak, N.V., Yushkova, O.V., Yuryev, P.O., and Bezrukikh, A.I., Casting synthesis of Bi12SiO20, Mendeleev Commun., 2021, vol. 31, no. 5, pp. 721–722. https://doi.org/10.1016/j.mencom.2021.09.043

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Krasnoyarsk Krai Shared Research Facilities Center, Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences.

We acknowledge the use of equipment at the Knowledge Intensive Methods for Characterization and Analysis of Novel Materials, Nanomaterials, and Mineral Raw Materials Shared Research Facilities Center, Siberian Federal University federal state autonomous educational institution of higher education.

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for Siberian Federal University, project no. FSRZ-2020-0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Bermeshev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bermeshev, T.V., Zhereb, V.P., Bundin, M.P. et al. Effect of Heat Treatment of Molten 6Bi2O3⋅SiO2 on the Phase Composition and Microstructure of Its Solidification Products. Inorg Mater 58, 1168–1178 (2022). https://doi.org/10.1134/S0020168522110024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522110024

Keywords:

Navigation