Skip to main content
Log in

Underwater Plasma Synthesis of Zn–Al Layered Double Hydroxides

  • Published:
Inorganic Materials Aims and scope

Abstract

Layered double hydroxides containing zinc in the doubly charged cation position and aluminum in the triply charged cation position of brucite-like structures have been synthesized by a new method with the use of a low-temperature underwater plasma. Electrode materials were used as precursors. Well-crystallized layered double hydroxides and impurity phases have been obtained. The thermal stability of the materials has been shown to be due to the presence of impurity phases. The synthesized layered structures have a large specific surface area, which allows them to be used as fillers for polymer-matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Berlin, A.A. and Pakhomova, L.K., Polymer matrices for high-strength reinforced composites (a review), Vysokomol. Soedin., Ser. A, 1990, vol. 32, no. 7, pp. 1347–1382.

    CAS  Google Scholar 

  2. Pomogailo, A.D., Synthesis and intercalation chemistry of hybrid organo–inorganic nanocomposites, Polym. Sci., Ser. C, 2006, vol. 48, no. 1. pp. 85–119.

    Article  Google Scholar 

  3. Ma, R., Takada, K., Fukuda, K., Iyi, N., Bando, Y., and Sasaki, T., Topochemical synthesis of monometallic (Co2+–Co3+) layered double hydroxide and its exfoliation into positively charged Co(OH)2 nanosheets, Angew. Chem., Int. Ed., 2008, vol. 47, no. 1, pp. 86–89. https://doi.org/10.1002/anie.200703941

    Article  CAS  Google Scholar 

  4. Gu, F., Cheng, X., Wang, S., Wang, X., and Lee, P.S., Oxidative intercalation for monometallic Ni2+–Ni3+ layered double hydroxide and enhanced capacitance in exfoliated nanosheets, Small, 2015, vol. 11, no. 17, pp. 2044–2050. https://doi.org/10.1002/smll.201402603

    Article  CAS  PubMed  Google Scholar 

  5. Nagarajan, R., Gupta, P., Singh, P., and Chakraborty, P., An ethylene glycol intercalated monometallic layered double hydroxide based on iron as an efficient bifunctional catalyst, Dalton Trans., 2016, vol. 45, no. 43, pp. 17508–17520. https://doi.org/10.1039/C6DT03129C

    Article  CAS  PubMed  Google Scholar 

  6. Sertsova, A.A., Subcheva, E.N., and Yurtov, E.V., Synthesis and study of structure formation of layered double hydroxides based on Mg, Zn, Cu, and Al, Russ. J. Inorg. Chem., 2015, vol. 60, pp. 23–32. https://doi.org/10.1134/S0036023615010167

    Article  CAS  Google Scholar 

  7. Nestroinaya, O.V., Ryl’tsova, I.G., Yapryntsev, M.N., and Lebedeva, O.E., Effect of the synthesis method on the phase composition and magnetism of layered double hydroxides, Inorg. Mater., 2020, vol. 56, pp. 747–753. https://doi.org/10.1134/S0020168520070109

    Article  Google Scholar 

  8. Zhao, Y., Hu, H., Yang, X., Yan, D., and Dai, Q., Tunable electronic transport properties of 2D layered double hydroxide crystalline microsheets with varied chemical compositions, Small, 2016, vol. 12, no. 33, pp. 4471–4476. https://doi.org/10.1002/smll.201601354

    Article  CAS  PubMed  Google Scholar 

  9. Bukhtiyarova, M.V., A review on effect of synthesis conditions on the formation of layered double hydroxides, J. Solid State Chem., 2019, vol. 269, pp. 494–506. https://doi.org/10.1016/j.jssc.2018.10.018

    Article  CAS  Google Scholar 

  10. Qu, J., Zhang, Q., Li, X., He, X., and Song, S., Mechanochemical approaches to synthesize layered double hydroxides: a review, Appl. Clay Sci., 2016, vol. 119, pp. 185–192. https://doi.org/10.1016/j.clay.2018.10.018

    Article  CAS  Google Scholar 

  11. Chen, H., Zhao, Q., Gao, L., Ran, J., and Hou, Y., Water-plasma assisted synthesis of oxygen-enriched Ni–Fe layered double hydroxide nanosheets for efficient oxygen evolution reaction, ACS Sustain. Chem. Eng., 2019, vol. 7, no. 4, pp. 4247–4254. https://doi.org/10.1021/acssuschemeng.8b05953

    Article  CAS  Google Scholar 

  12. Hur, T.B., Phuoc, T.X., and Chyu, M.K., Synthesis of Mg–Al and Zn–Al-layered double hydroxide nanocrystals using laser ablation in water, Opt. Lasers Eng., 2009, vol. 47, no. 6, pp. 695–700. https://doi.org/10.1016/j.optlaseng.2008.11.006

    Article  Google Scholar 

  13. Agafonov, A.V., Sirotkin, N.A., Titov, V.A., and Khlyustova, A.V., Low-temperature underwater plasma as an instrument to manufacture inorganic nanomaterials, Russ. J. Inorg. Chem., 2022, vol. 67, pp. 253–261. https://doi.org/10.1134/S0036023622030020

    Article  CAS  Google Scholar 

  14. Mascolo, G. and Marino, O., A new synthesis and characterization of magnesium–aluminium hydroxides, Mineral. Mag., 1980, vol. 43, no. 329, pp. 619–621. https://doi.org/10.1180/minmag.1980.043.329.09

    Article  CAS  Google Scholar 

  15. Hur, T.B., Phuoc, T.X., and Chyu, M.K., New approach to the synthesis of layered double hydroxides and associated ultrathin nanosheets in de-ionized water by laser ablation, J. Appl. Phys., 2010, vol. 108, no. 11, p. 114312. https://doi.org/10.1063/1.3518510

    Article  CAS  Google Scholar 

  16. Ahmed, A.A.A., Talib, Z.A., and Hussein, M.Z., Thermal, optical and dielectric properties of Zn–Al layered double hydroxide, Appl. Clay Sci., 2012, vol. 56, pp. 68–76. https://doi.org/10.1016/j.clay.2011.11.024

    Article  CAS  Google Scholar 

  17. Abderrazek, K., Frini Srasra, N., and Srasra, E., Synthesis and characterization of [Zn–Al] layered double hydroxides: effect of the operating parameters, J. Chin. Chem. Soc., 2017, vol. 64, no. 3, pp. 346–353. https://doi.org/10.1002/jccs.201600258

    Article  CAS  Google Scholar 

  18. Rodriguez-Rivas, F., Pastor, A., Barriga, C., Cruz-Yusta, M., Sánchez, L., and Pavlovic, I., Zn–Al layered double hydroxides as efficient photocatalysts for NOx abatement, Chem. Eng. J., 2018, vol. 346, pp. 151–158. https://doi.org/10.1016/j.cej.2018.04.022

    Article  CAS  Google Scholar 

  19. Misol, A., Labajos, F.M., Morato, A., and Rives, V., Synthesis of Zn, Al layered double hydroxides in the presence of amines, Appl. Clay Sci., 2020, vol. 189, p. 105539. https://doi.org/10.1016/j.clay.2020.105538

    Article  CAS  Google Scholar 

  20. Salih, E.Y., Sabri, M.F.M., Eisa, M.H., Sulaiman, K., Ramizy, A., Hussein, M.Z., and Said, S.M., Mesoporous ZnO/ZnAl2O4 mixed metal oxide-based Zn/Al layered double hydroxide as an effective anode material for visible light photodetector, Mater. Sci. Semicond. Process., 2021, vol. 121, p. 105370. https://doi.org/10.1016/j.mssp.2020.105370

    Article  CAS  Google Scholar 

  21. Cavani, F., Trifiro, F., and Vaccari, A., Hydrotalcite-type anionic clays: preparation, properties and applications, Catal. Today, 1991, vol. 11, no. 2, pp. 173–301. https://doi.org/10.1016/0920-5861(91)80068-K

    Article  CAS  Google Scholar 

  22. Roobottom, H.K., Jenkins, H.D.B., Passmore, J., and Glasser, L., Thermochemical radii of complex ions, J. Chem. Educat., 1999, vol. 76, no. 11, pp. 1570–1573. https://doi.org/10.1021/ed076p1570

    Article  CAS  Google Scholar 

  23. Carrado, K., Kostapapas, A., and Suib, S., Layered double hydroxides (LDHs), Solid State Ionics, 1988, vol. 26, no. 2, pp. 77–86. https://doi.org/10.1016/0167-2738(88)90018-5

    Article  CAS  Google Scholar 

  24. Puttaswamy, N.S. and Kamath, P.V., Reversible thermal behaviour of layered double hydroxides: a thermogravimetric study, J. Mater. Chem., 1997, vol. 7, no. 9, pp. 1941–1945. https://doi.org/10.1039/A701911D

    Article  CAS  Google Scholar 

  25. Sing, K.S., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquérol, J., and Siemieniewska, T., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 1985, vol. 57, no. 4, pp. 603–619. https://doi.org/10.1351/pac198557040603

    Article  CAS  Google Scholar 

  26. Bruggeman, P., Ribežl, E., Maslani, A., Degroote, J., Malesevic, A., Rego, R., Vierendeels, J., and Leys, C., Characteristics of atmospheric pressure air discharges with a liquid cathode and a metal anode, Plasma Sources Sci. Technol., 2008, vol. 17, no. 2, p. 025012. https://doi.org/10.1088/0963-0252/17/2/025012

    Article  CAS  Google Scholar 

  27. Khlyustova, A., Sirotkin, N., Kraev, A., Titov, V., and Agafonov, A., Parameters of underwater plasma as a factor determining the structure of oxide (Al, Cu, and Fe), Materialia, 2021, vol. 16, p. 101081. https://doi.org/10.1016/j.mtla.2021.101081

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to our colleagues at the Upper Volga Regional Physicochemical Research Center (Shared Research Facilities Center), Krestov Institute of Solution Chemistry, Russian Academy of Sciences, and at the Materials Research and Metallurgy Shared Research Facilities Center, Moscow Institute of Steel and Alloys (National University of Science and Technology).

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education, state research target no. 0092-2019-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Khlyustova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agafonov, A.V., Sirotkin, N.A., Titov, V.A. et al. Underwater Plasma Synthesis of Zn–Al Layered Double Hydroxides. Inorg Mater 58, 1137–1144 (2022). https://doi.org/10.1134/S0020168522110012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522110012

Keywords:

Navigation