Skip to main content
Log in

Thermodynamic Assessment of Pyrometric Monitoring of Gallium Purity during Crystallization Purification

  • Published:
Inorganic Materials Aims and scope

Abstract—

This paper examines key features of the preparation of high-purity Ga from electronic and electrical engineering industry waste. The decrease in the melting point of impurity-containing Ga is assessed thermodynamically in the ideal solution approximation. It is proposed that the purity of gallium in the final crystallization purification step can be monitored via precision measurement of the temperature of the melt with a pyrometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Medvedeva, Z.S., Kalashnik, O.N., Kalashnikov, Ya.A., et al., Fiziko-khimicheskie svoistva poluprovodnikovykh veshchestv (Physicochemical Properties of Semiconducting Substances), Moscow: Nauka, 1979.

  2. Marenkin, S.F., Fedorchenko, I.V., Izotov, A.D., and Vasil’ev, M.G., Physicochemical principles underlying the synthesis of granular semiconductor–ferromagnet magnetic structures exemplified by AIIGeAs2 (AII = Zn, Cd) materials, Inorg. Mater., 2019, vol. 55, no. 9, pp. 865–872. https://doi.org/10.1134/S0020168519090061

    Article  Google Scholar 

  3. Novotortsev, V.M., Kochura, A.V., and Marenkin, S.F., New ferromagnetics based on manganese-alloyed chalcopyrites \({{{\text{A}}}^{{{\text{II}}}}}{{{\text{B}}}^{{{\text{IV}}}}}{\text{C}}_{{\text{2}}}^{{\text{V}}}\), Inorg. Mater., 2010, vol. 46, no. 13, pp. 1421–1436. https://doi.org/10.1134/S002016851013002910.1134/S0020168510130029

    Article  CAS  Google Scholar 

  4. Marenkin, S.F., Izotov, A.D., Fedorchenko, I.V., and Novotortsev, V.M., Manufacture of magnetic granular structures in semiconductor–ferromagnet systems, Russ. J. Inorg. Chem., 2015, vol. 60, no. 3, pp. 295–300. https://doi.org/10.1134/S0036023615030146

    Article  CAS  Google Scholar 

  5. Skobelev, D.O., Shubov, L.Ya., Ivankov, S.I., and Doronkina, I.G., Sistematizatsiya tekhnologii resursosberezheniya (Systematization of Resource-Saving Technologies), Moscow: Sam Poligrafist, 2020.

  6. Potolokov, N.A., Kozlov, S.A., Zakharova, N.S., and Fedorov, V.A., Preparation of high-purity gallium and arsenic from semiconductor materials production waste, XI Konferentsiya po khimii vysokochistykh veshchestv (XI Conf. on the Chemistry of High-Purity Substances), Nizhny Novgorod, 2000, pp. 35–36.

  7. Kol’tsov, V.B., Larionov, N.M., Slesarev, S.A., and Barkinkhoeva, T.A., Technology of semiconductor-grade gallium, Estestv. Tekh. Nauki, 2016, no. 4 (94), pp. 12–20.

  8. Glazov, V.M. and Pavlova, L.M., Khimicheskaya termodinamika i fazovye ravnovesiya (Chemical Thermodynamics and Phase Equilibria), Moscow: Metallurgiya, 1988.

  9. Ugai, Ya.A., Vvedenie v khimiyu poluprovodnikov (Introduction to the Chemistry of Semiconductors), Moscow: Vysshaya Shkola, 1975.

  10. Marenkin, S.F., Ochertyanova, L.I., Bel’skii, N.K., and Kharsika, V.F., Effective distribution coefficient of Te in ZnAs2, Inorg. Mater., 2000, vol. 36, no. 4, pp. 322–325.

    Article  Google Scholar 

  11. Hansen, M. and Anderko, K., Constitution of Binary Alloys, New York: McGraw-Hill, 1958, 2nd ed.

    Book  Google Scholar 

  12. Kozlov, S.A., Preparation of high-purity gallium from semiconductor materials production waste, Cand. Sci. (Chem.) Dissertation, Moscow: Kurnakov Inst. of General and Inorganic Chemistry, Russ. Acad. Sci., 2004.

  13. Ukhov, V.F., Vatolin, N.A., and Gel’chinskii, B.R., Mezhchastichnoe vzaimodeistvie v zhidkikh metallakh (Interparticle Interaction in Liquid Metals), Moscow: Nauka, 1979.

  14. Devyatykh, G.G., Karpov, Yu.A., and Osipova, L.I., Vystavka-kollektsiya veshchestv osoboi chistoty (Exhibition–Collection of Extrapure Substances), Moscow: Nauka, 2003.

  15. The gallium melting-point standard, NBS Special Publication 481, Washington, DC: U.S. Department of Commerce National Bureau of Standards, 1977.

  16. Strouse, G.F., Standard reference material 1751: gallium melting-point standard, NIST Special Publication 260-157, Gaithersburg: Chemical Science and Technology Laboratory Process Measurements Division National Institute of Standards and Technology, 2004.

  17. Frunze, A.V., Approaches to improving the accuracy of contactless instruments for thermal monitoring of substances, materials, and articles, Extended Abstract of Doctoral (Eng.) Dissertation, Tambov, 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. B. Kol’tsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kol’tsov, V.B., Berezina, N.V., Mikhailova, M.S. et al. Thermodynamic Assessment of Pyrometric Monitoring of Gallium Purity during Crystallization Purification. Inorg Mater 58, 1075–1081 (2022). https://doi.org/10.1134/S0020168522100090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522100090

Keywords:

Navigation