Skip to main content
Log in

Influence of Size and Surface Effects on Electrical Transport Properties of NiO Nanoparticles Produced in a Vacuum Arc Discharge

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have studied the influence of the size of nickel oxide nanoparticles on their resistive and capacitive properties. The nanoparticles have been synthesized by vacuum arc deposition and characterized by X-ray diffraction and electron microscopy. The results demonstrate that raising the substrate temperature from 300 to 600 K increases the size of the forming nanoparticles from 3.2 to 32.7 nm. The frequency dependences of the ac conductivity, impedance, dielectric permittivity, and dielectric loss tangent of the NiO nanoparticles in the range form 50 Hz to 5 MHz are influenced by their size. In the size range studied, the impedance spectroscopy results we obtained can be interpreted in terms of the relative fraction of interfaces. The transport properties of the 12.1-nm particles differ from those of both the larger and smaller particles, which can be understood in terms of the volume fraction of interparticle boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Sheena, P.A., Hitha, H., Sreedevi, A., and Varghese, T., Microstructural characterization and modified spectral response of cobalt doped NiO nanoparticles, Mater. Chem. Phys., 2019, vol. 229, pp. 412–420. https://doi.org/10.1016/j.matchemphys.2019.03.033

    Article  CAS  Google Scholar 

  2. Shehata, M.M., Youssef, W.M., Mahmoud, H.H., and Masoud, A.M., Sol–gel synthesis of NiO/CuO nanocomposites for uptake of rare earth elements (Ho, Yb, and Sm) from aqueous solutions, Russ. J. Inorg. Chem., 2020, vol. 65, no. 2, pp. 279–289. https://doi.org/10.1134/S0036023620020163

    Article  CAS  Google Scholar 

  3. Simonenko, T.L., Ivanova, V.M., Simonenko, N.P., Simonenko, E.P., Sevastyanov, V.G., and Kuznetsov, N.T., Obtaining of NiO nanosheets by a combination of sol–gel technology and hydrothermal treatment using nickel acetylacetonate as a precursor, Russ. J. Inorg. Chem., 2019, vol. 64, no. 14, pp. 1753–1757. https://doi.org/10.1134/S0036023619140080

    Article  CAS  Google Scholar 

  4. Bartolomé, J., Taeño, M., Martínez-Casado, R., Maestre, D., and Cremades, A., Ethanol gas sensing mechanisms of p-type NiO at room temperature, Appl. Surf. Sci., 2022, vol. 579, p. 152134. https://doi.org/10.1016/j.apsusc.2021.152134

    Article  CAS  Google Scholar 

  5. Dhas, S.D., Maldar, P.S., Patil, M.D., Nagare, A.B., Waikar, M.R., Sonkawade, R.G., and Moholkar, A.V., Synthesis of NiO nanoparticles for supercapacitor application as an efficient electrode material, Vacuum, 2020, vol. 181, p. 109646. https://doi.org/10.1016/j.vacuum.2020.109646

    Article  CAS  Google Scholar 

  6. Lee, M.S., Lee, S., Jeong, W., Ryu, S., Yu, W., Lee, Y.H., Cho, G.Y., and Cha, S.W., Nanoporous nickel thin film anode optimization for low-temperature solid oxide fuel cells, Int. J. Hydrogen Energy, 2021, vol. 46, no. 73, pp. 36445–36453. https://doi.org/10.1016/j.ijhydene.2021.08.138

    Article  CAS  Google Scholar 

  7. Morin, F.J., Electrical properties of NiO, Phys. Rev. B, 1954, vol. 93, p. 1199. https://doi.org/10.1103/PhysRev.93.1199

    Article  CAS  Google Scholar 

  8. Puspharajah, P., Radhakrishna, S., and Arof, A.K., Transparent conducting lithium-doped nickel oxide thin films by spray pyrolysis technique, J. Mater. Sci., 1997, vol. 32, pp. 3001–3006. https://doi.org/10.1023/A:1018657424566

    Article  CAS  Google Scholar 

  9. Makhlouf, S.A., Kassem, M.A., and Abdel-Rahim, M.A., Particle size-dependent electrical properties of nanocrystalline NiO, J. Mater. Sci., 2009, vol. 44, pp. 3438–3444. https://doi.org/10.1007/s10853-009-3457-0

    Article  CAS  Google Scholar 

  10. Fuschillo, B., Lalevic, B., and Leung, B., Dielectric properties of NiO and NiO(Li), Thin Solid Films, 1974, vol. 24, no. 1, pp. 181–192. https://doi.org/10.1016/0040-6090(74)90263-6

    Article  CAS  Google Scholar 

  11. Kashir, A., Jeong, H.-W., Lee, G.-H., Mikheenko, P., and Jeong, Y.H., Dielectric properties of strained nickel oxide thin films, J. Korean Phys. Soc., 2019, vol. 74, pp. 984–988. https://doi.org/10.3938/jkps.74.984

    Article  CAS  Google Scholar 

  12. Kaviyarasu, K., Manikandan, E., Kennedy, J., Jayachandran, M., Ladchumananandasiivam, R., De Gomes, U.U., and Maaza, M., Synthesis and characterization studies of NiO nanorods for enhancing solar cell efficiency using photon upconversion materials, Ceram. Int., 2016, vol. 42, no. 7, pp. 8385–8394. https://doi.org/10.1016/j.ceramint.2016.02.054

    Article  CAS  Google Scholar 

  13. Bonomo, M., Synthesis and characterization of NiO nanostructures: a review, J. Nanopart. Res., 2018, vol. 20, no. 8, p. 222. https://doi.org/10.1007/s11051-018-4327-y

    Article  CAS  Google Scholar 

  14. Usha, V., Kalyanaraman, S., Vettumperumal, R., and Thangavel, R., A Study of Frequency Dependent Electrical and Dielectric Properties of NiO Nanoparticles, Phys. B: Condens. Matter., 2017, vol. 504, pp. 63–68. https://doi.org/10.1016/j.physb.2016.10.011

  15. Karpov, I.V., Ushakov, A.V., Lepeshev, A.A., and Fedorov, L.Yu., Plasma-chemical reactor based on a low-pressure pulsed arc discharge for synthesis of nanopowders, Tech. Phys., 2017, vol. 87, no. 1, pp. 168–173. https://doi.org/10.1134/S106378421701011X

    Article  CAS  Google Scholar 

  16. Reddy, B.P., Ganavesh, K.S., and Hussain, O.M., Growth, microstructure and supercapacitive performance of copper oxide thin films prepared by RF magnetron sputtering, Appl. Phys. A, 2016, vol. 122, p. 128. https://doi.org/10.1007/s00339-015-9588-z

    Article  CAS  Google Scholar 

  17. Lepeshev, A.A., Drokin, N.A., Ushakov, A.V., Karpov, I.V., Fedorov, L.Yu., and Bachurina, E.P., Localization and transfer of charge carriers in CuO nanopowder by impedance spectroscopy, J. Mater. Sci.: Mater. Electron., 2018, vol. 29, no. 14, pp. 12118–12125. https://doi.org/10.1007/s10854-018-9319-2

    Article  CAS  Google Scholar 

  18. Rao, K.V. and Smakula, A., Dielectric properties of cobalt oxide, nickel oxide, and their mixed crystals, J. Appl. Phys., 1965, vol. 36, p. 2031. https://doi.org/10.1063/1.1714397

    Article  CAS  Google Scholar 

  19. Koops, C.G., On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies, Phys. Rev., 1951, vol. 83, p. 121. https://doi.org/10.1103/PhysRev.83.121

    Article  CAS  Google Scholar 

  20. Arun, L., Karthikeyan, C., Philip, D., and Unni, C., Optical, magnetic, electrical, and chemo-catalytic properties of bio-synthesized CuO/NiO nanocomposites, J. Phys. Chem. Solids, 2020, vol. 136, p. 109155. https://doi.org/10.1016/j.jpcs.2019.109155

    Article  CAS  Google Scholar 

  21. Koshy, J., Soosen, S.M., Chandran, A., and George, K.C., Correlated Barrier Hopping of CuO Nanoparticles, J. Semicond., 2015, vol. 36, no. 12, p. 122003. https://doi.org/10.1088/1674-4926/36/12/122003

  22. Lepeshev, A.A., Ushakov, A.V., Karpov, I.V., Balaev, D.A., Krasikov, A.A., Dubrovskiy, A.A., Velikanov, D.A., and Petrov, M.I., Particularities of the magnetic state of CuO nanoparticles produced by low-pressure plasma arc discharge, J. Supercond. Novel Magn., 2017, vol. 30, no. 4, pp. 931–936. https://doi.org/10.1007/s10948-016-3885-4

    Article  CAS  Google Scholar 

  23. Biju, V. and Abdul Khadar M., AC conductivity of nanostructured nickel oxide, J. Mater. Sci., 2001, vol. 36, p. 5779. https://doi.org/10.1023/A:1012995703754

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, project no. 20-19-00021.

The electron-microscopic work was carried out at the Shared Research Facilities Center, Siberian Federal University, and was supported by the Russian Federation Ministry of Science and Higher Education (state research target, theme no. FSRZ-2020-0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Karpov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, I.V., Ushakov, A.V., Fedorov, L.Y. et al. Influence of Size and Surface Effects on Electrical Transport Properties of NiO Nanoparticles Produced in a Vacuum Arc Discharge. Inorg Mater 58, 1043–1050 (2022). https://doi.org/10.1134/S0020168522100077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522100077

Keywords:

Navigation