Skip to main content
Log in

KLa(SO4)2–SrSO4 System at Temperatures above 600°C

  • Published:
Inorganic Materials Aims and scope

Abstract—

The KLa(SO4)2–SrSO4 system has been studied at temperatures above 600°C by X-ray diffraction and thermogravimetric analysis. The results demonstrate that the system contains a broad range (0–70 mol % KLa(SO4)2) of solid solutions based on the orthorhombic phase β-SrSO4 (sp. gr. Pnma). We have determined the unit-cell parameters of the solid solutions. Their unit-cell volume has been shown to increase systematically from 307.67(6) to 313.54(21) Å3 in the composition range studied. The solid solutions result from heterovalent substitution of potassium and lanthanum ions for two strontium ions and decompose above a temperature of 950°C to form the SO3 and La2O3 oxides and potassium and strontium sulfates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Satoshi Takahashi, Masanobu Seki, and Katsumi Setoyama, Formation of SrSO4·0.5H2O in an SrSO4—H2O system and its solid solution in a CaSO4–SrSO4–H2O, Bull. Chem. Soc. Jpn., 1993, vol. 66, pp. 2219–2224. https://doi.org/10.1246/bcsj.66.2219

    Article  CAS  Google Scholar 

  2. Bushuev, N.N., Tyul’bendzhian, G.S., Velikodniy, Yu.A., Egorova, A.N., and Shatalova, T.B., The investigation of the system KLa(SO4)2·H2O–SrSO4·0.5 H2O, Russ. J. Inorg. Chem., 2021, vol. 66, no. 3, pp. 405–411. https://doi.org/10.1134/S0036023621030049

    Article  CAS  Google Scholar 

  3. Bushuev, N.N., Plotko, I.I., and Shatalova, T.B., KLa(SO4)2·H2O–SrSO4·0.5H2O system in the temperature range 100–500°C, Khim. Prom–st. Segodnya, 2021, no. 3, pp. 56–59.

  4. Inorganic Crystal Structure Database – ICSD (date 85810 structure SrSO4).

  5. Antao, S.M., The crystal structure of sulfate SnSO4 and comparison with isostructural SrSO4, PbSO4 and BaSO4, Powder Diffr., 2012, vol. 27, no. 3, pp. 179–183. https://doi.org/10.1017/S0885715612000450

    Article  CAS  Google Scholar 

  6. Antao, S.M., The structural trends for celestite (SrSO4), anglesite (PbSO4) and barite (BaSO4) conformation of expected variations within the SO4 groups, Am. Mineral., 2012, vol. 97, no. 4, pp. 661–665. https://doi.org/10.2138/am.2012.3905

    Article  CAS  Google Scholar 

  7. James, R.W. and Wood, W.A., The structures of barytes, celestine and anglesite, Proc. R. Soc. London, A, 1925, vol. 109, pp. 598–620.

    Article  CAS  Google Scholar 

  8. Miyke, M., Minato, J., Morikaw, M., and Hvai, S., Crystal structures and sulphate force constants of barite, celestite and anglesite, Am. Mineral., 1978, vol. 63, nos. 5–6, pp. 506–510.

    Google Scholar 

  9. Wen-Show Wang, Liang Zhen, Cheng-Yan Xu, and Wen-Zhu Shao, Synthesis and formation process of SrSO4 sisal-like hierarchical structures at room temperature, CrystEngComm, 2011, vol. 13, no. 2, pp. 620–625. https://doi.org/10.1039/C0CE00062K

    Article  CAS  Google Scholar 

  10. Xuaqian Kuang, Jingui Xu, Doneyu Zhao, Dawei Fan, Xiaodony Li, Wenge Zhow, and Hongsen Xie, The high-pressure elastic properties of celestine and the high-pressure behavior of barite-type sulphates, High Temp.–High Pressures, 2017, vol. 46, pp. 481–495.

    Google Scholar 

  11. Jiayuc Sun, Buangchao San, Bing Xuc, and Dianping Cui, Synthesis and formation process of SrSO4: Sm3+-phosphors with hierarchical structures and its electron trapping luminescence properties, J. Alloys Compd., 2017, vol. 574, no. 10, pp. 560–564.

    Article  Google Scholar 

  12. Shannon, R.D. and Prewitt, C.T., Effective ionic radii in oxides and fluorides, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 1969, vol. 25, pp. 925–946. https://doi.org/10.1107/S0567740869003220

    Article  CAS  Google Scholar 

  13. Bushuev, N.N., Egorova, A.N., and Tyul’bendzhyan, G.S., KLa(SO4)2–CaSO4 system, Inorg. Mater., 2021, vol. 57, no. 2, pp. 142–145. https://doi.org/10.1134/S0020168521020047

    Article  CAS  Google Scholar 

  14. Bushuev, N.N. and Zinin, D.S., Thermal decomposition features of calcium and rare-earth oxalates, Russ. J. Inorg. Chem., 2016, vol. 61, no. 2, pp. 161–167. https://doi.org/10.1134/S0036023616020030

    Article  CAS  Google Scholar 

  15. Bushuev, N.N. and Zinin, D.S., Heterogeneous conversion of rare-earth sulfate concentrate into oxalate form, Khim. Prom–st. Segodnya, 2015, no. 4, pp. 6–15.

  16. Zinin, D.S. and Bushuev, N.N., Separate crystallization of lanthanide oxalates and calcium oxalates from nitric acid solution, Russ. J. Inorg. Chem., 2018, vol. 63, no. 9, pp. 1211–1216. https://doi.org/10.1134/S003602361809022X

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Bushuev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bushuev, N.N., Egorova, A.N. & Plotko, I.I. KLa(SO4)2–SrSO4 System at Temperatures above 600°C. Inorg Mater 58, 1162–1167 (2022). https://doi.org/10.1134/S0020168522100053

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522100053

Keywords:

Navigation