Skip to main content
Log in

Structure, Mechanical Properties, Thermal Stability, and Chemical Stability of Metastable Ti1 – xAlxN (x = 0.03–0.05) Solid Solutions Prepared as Arc PVD Coatings on WC–Co Alloys

  • Published:
Inorganic Materials Aims and scope

Abstract—

We report a comparative study of the chemical and thermal stability and mechanical properties of arc PVD TiN and Ti0.97Al0.03N coatings. Heating the coatings in vacuum to 600 and 700°C has been shown to cause an increase in crystallite size and a decrease in biaxial macrostress, lattice parameter, and lattice strain. These effects are due to thermally activated structure restoration processes associated with annihilation of defects generated during the growth of the coatings. The stress relaxation rate in the Ti0.97Al0.03N coating is higher because it contains a higher defect density. At 700°C, the Ti0.97Al0.03N solid solution undergoes spinodal decomposition into TiN and AlN (FCC). Unlike those of the TiN coating, the hardness and the parameters H3/E2 and H/E of the Ti0.97Al0.03N coating remain essentially unchanged as the annealing temperature is raised to 700°C, which is due to dispersion hardening as a result of the spinodal decomposition. The coatings exhibit similar behavior in acidic and alkaline media, but Ti0.97Al0.03N has a somewhat higher oxidation resistance in air at 550°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Schuster, J.C. and Bauer, J., The ternary system titanium–aluminum–nitrogen, J. Solid State Chem., 1984, vol. 53, no. 2, pp. 260–265. https://doi.org/10.1016/0022-4596(84)90100-2

    Article  CAS  Google Scholar 

  2. Wahlstrom, U., Hultman, L., Sundgren, J.-E., Adibi, F., Petrov, I., and Greene, J.E., Crystal growth and microstructure of polycrystalline Ti1 – xAlxN alloy films deposited by ultra-high-vacuum dual-target magnetron sputtering, Thin Solid Films, 1993, vol. 235, nos. 1–2, pp. 62–70. https://doi.org/10.1016/0040-6090(93)90244-J

  3. Tanaka, Y., Gur, T.M., Kelly, M., Hagstrom, S.B., Ikeda, T., Wakihira, K., and Satoh, H., Properties of (Ti1 – xAlx)N coatings for cutting tools prepared by the cathodic arc ion plating method, J. Vac. Sci. Technol., A, 1992, vol. 10, no. 4, pp. 1749–1756. https://doi.org/10.1116/1.577742

    Article  CAS  Google Scholar 

  4. Ikeda, T. and Satoh, H., Phase formation and characterization of hard coatings in the Ti–Al–N system prepared by the cathodic arc ion plating method, Thin Solid Films, 1991, vol. 195, nos. 1–2, pp. 99–110.

  5. Hörling, A., Hultman, L., Odén, M., Sjölén, J., and Karlsson, L., Mechanical properties and machining performance of Ti1 – xAlxN-coated cutting tools, Surf. Coat. Technol., 2005, vol. 191, nos. 2–3, pp. 384–392. https://doi.org/10.1016/j.surfcoat.2004.04.056

  6. Kutschej, K., Mayrhofer, P.H., Polcik, P., Kathrein, M., Tessadri, R., and Mitterer, C., Structure, mechanical and tribological properties of sputtered Ti1 – xAlxN coatings with 0.5 < x < 0.75, Surf. Coat. Technol., 2005, vol. 200, no. 7, pp. 2358–2365. https://doi.org/10.1016/j.surfcoat.2004.12.008

    Article  CAS  Google Scholar 

  7. Wang, D.-Y., Li, Y.-W., and Ho, W.-Y., Deposition of high (Ti,Al)N hard coatings by vacuum arc evaporation process, Surf. Coat. Technol., 1999, vol. 114, nos. 2–3, pp. 109–113. https://doi.org/10.1016/S0257-8972(99)00020-1

  8. Bressan, J.D., Hesse, R., and Silva, E.M., Jr., Abrasive wear behavior of high speed steel and hard metal coated with TiAlN and TiCN, Wear, 2001, vol. 250, nos. 1–12, pp. 561–568. https://doi.org/10.1016/S0043-1648(01)00638-X

  9. Bouzakis, K.-D., Michailidis, N., Skordaris, G., Bouzakis, E., Biermann, D., and M’Saoubi, R., Cutting with coated tools: coating technologies, characterization methods and performance optimization, CIRP Ann., 2012, vol. 61, no. 2, pp. 703–723. https://doi.org/10.1016/j.cirp.2012.05.006

    Article  Google Scholar 

  10. Sui, X., Lin, G., Qin, X., Yu, H., Zhou, X., Wang, K., and Wang, Q., Relationship of microstructure, mechanical properties and titanium cutting performance of TiAlN/TiAlSiN composite coated tool, Ceram. Int., 2016, vol. 42, no. 6, pp. 7524–7532. https://doi.org/10.1016/j.ceramint.2016.01.159

    Article  CAS  Google Scholar 

  11. Vereschaka, A.A., Grigoriev, S.N., Sitnikov, N.N., and Batako, A.D., Delamination and longitudinal cracking in multi-layered composite nanostructured coatings and their influence on cutting tool life, Wear, 2017, vols. 390–391, pp. 209–219. https://doi.org/10.1016/j.wear.2017.07.021

  12. Beake, B.D., Ning, L., Gey, Ch., Veldhuis, S.C., Komarov, A., Weaver, A., Khanna, M., and Fox-Rabinovich, G.S., Wear performance of different PVD coatings during hardwet endmilling of H13 tool steel, Surf. Coat. Technol., 2015, vol. 279, pp. 118–125. https://doi.org/10.1016/j.surfcoat.2015.08.038

    Article  CAS  Google Scholar 

  13. Anikin, V.N., Blinkov, I.V., Volkhonskii, A.O., Sobolev, N.A., Kratokhvil, R.V., Frolov, A.E., and Tsareva, S.G., Ion-plasma Ti–Al–N coatings on a cutting hard-alloy tool operating under conditions of constant and alternating-sign loads, Russ. J. Non-Ferrous Met., 2009, vol. 50, no. 4, pp. 424–431. https://doi.org/10.3103/S1067821209040233

    Article  Google Scholar 

  14. Blinkov, I.V., Belov, D.S., Volkhonskiy, A.O., Chernogor, A.O., and Sergevnin, V.S., Hardening ion plasma coatings (Ti,Alx)N (x = 3 at. %) for carbide cutting tools, J. Phys.: Conf. Ser., 2020, vol. 1713, p. 012011. https://doi.org/10.1088/1742-6596/1713/1/012011

    Article  Google Scholar 

  15. Blinkov, I.V., Volkhonsky, A.O., Belov, D.S., Blinkov, V.I., Skryleva, E.A., and Shvyndina, N.V., Nanostructuring and property modification of arc PVD TiN coatings by nickel, Inorg. Mater., 2015, vol. 51, no. 2, pp. 122–128. https://doi.org/10.1134/S002016851502003X

    Article  CAS  Google Scholar 

  16. Vainshtein, B.K., Simmetriya kristallov. Metody strukturnoi kristallografii (Symmetry of Crystals and Structural Crystallography Methods), vol. 2 of Sovremennaya kristallografiya (Modern Crystallography), Vainshtein, B.K., Chernov, A.A., and Shuvalov, L.A., Eds., Moscow: Nauka, 1979.

  17. ISO/FDIS 14577-1: Metallic Materials – Instrumented Indentation Test for Hardness and Materials Parameters, 2002.

  18. Kiryukhantsev-Korneev, F.V., Elemental analysis of coatings by high frequency glow discharge optical emission spectroscopy, Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 5, pp. 585–590. https://doi.org/10.1134/S207020511205005X

    Article  CAS  Google Scholar 

  19. Xia, Q., Xia, H., and Ruoff, A.L., Pressure induced rocksalt phase of aluminum nitride: a metastable structure at ambient condition, J. Appl. Phys., 1993, vol. 73, p. 8198. https://doi.org/10.1063/1.353435

    Article  CAS  Google Scholar 

  20. Horling, A., Hultman, L., Oden, M., Sjolen, J., and Karlsson, T., Thermal stability of arc evaporated high aluminum-content Ti1 – xAlxN thin films, J. Vac. Sci. Technol., A, 2002, vol. 20, pp. 1815–1823. https://doi.org/10.1116/1.1503784

    Article  CAS  Google Scholar 

  21. Mayrhofer, P.H., Horling, A., Karlsson, L., Mitterer, C., and Hultman, L., Self-organized nanostructures in the Ti–Al–N system, Appl. Phys. Lett., 2003, vol. 83, no. 10, p. 2049. https://doi.org/10.1063/1.1608464

    Article  CAS  Google Scholar 

  22. Donohue, L.A., Lewis, D.B., Munz, W.-D., Stack, M.M., Lyon, S.B., Wang, H.-W., and Rafaja, D., The influence of low concentrations of chromium and yttrium on the oxidation behaviour, residual stress and corrosion performance of TiAlN hard coatings on steel substrates, Vacuum, 1999, vol. 55, no. 2, pp. 109–114. https://doi.org/10.1016/S0042-207X(99)00135-9

    Article  CAS  Google Scholar 

  23. Suh, C.-M., Hwang, B.-W., and Murakami, R.-I., Behaviors of residual stress and high-temperature fatigue life in ceramic coatings produced by PVD, Mater. Sci. Eng., A, 2003, vol. 343, nos. 1–2, pp. 1–7. https://doi.org/10.1016/S0921-5093(02)00327-1

  24. Jaros, M., Musil, J., and Haviar, S., Interrelationships among macrostress, microstructure and mechanical behavior of sputtered hard Ti(Al,V)N films, Mater. Lett., 2019, vol. 235, pp. 92–96. https://doi.org/10.1016/j.matlet.2018.09.173

    Article  CAS  Google Scholar 

  25. Thornton, J.A. and Hoffman, D.W., Stress-related effects in thin films, Thin Solid Films, 1989, vol. 171, no. 1, pp. 5–31. https://doi.org/10.1016/0040-6090(89)90030-8

    Article  Google Scholar 

  26. Kim, J.H., Gu, G., Kwon, M.-H., Koo, M., Kim, E.-Y., Kim, J.-K., Lee, J.S., and Suh, D.-W., Microstructure and tensile properties of chemically heterogeneous steel consisting of martensite and austenite, Acta Mater., 2022, vol. 223, p. 117506. https://doi.org/10.1016/j.actamat.2021.117506

    Article  CAS  Google Scholar 

  27. Leyland, A. and Matthews, A., On the signification of the H/E ratio in wear control: a nanocomposite coatings approach to optimized tribological behaviour, Wear, 2000, vol. 246, nos. 1–2, pp. 1–11. https://doi.org/10.1016/S0043-1648(00)00488-9

  28. Mannling, H.-D., Patil, D.S., Moto, K., Jilek, M., and Veprek, S., Thermal stability of superhard nanocomposite coatings consisting of immiscible nitrides, Surf. Coat. Technol., 2001, vols. 146–147, pp. 263–267. https://doi.org/10.1016/S0257-8972(01)01474-8

  29. Bertoti, I., Characterization of nitride coatings by XPS, Surf. Coat. Technol., 2002, vols. 151–152, pp. 194–203. https://doi.org/10.1016/S0257-8972(01)01619-X

  30. Burke, A.R., Brown, C.R., Bowling, W.C., Glaub, J.E., Kapsch, D., Love, C.M., Whitaker, R.B., and Moddeman, W.E., Ignition mechanism of the titanium–boron pyrotechnic mixture, Surf. Interface Anal., 1988, vol. 11, pp. 353–358. https://doi.org/10.1002/sia.740110614

    Article  CAS  Google Scholar 

  31. Munz, W.-D., Titanium aluminum nitride films: a new alternative to tin coatings, J. Vac. Sci. Technol., A, 1986, vol. 4, pp. 2717–2725. https://doi.org/10.1116/1.573713

    Article  Google Scholar 

  32. Chen, L., Paulitsch, J., Du, Y., and Mayrhofer, P.H., Thermal stability and oxidation resistance of Ti–Al–N coatings, Surf. Coat. Technol., 2012, vol. 206, pp. 2954–2960. https://doi.org/10.1016/j.surfcoat.2011.12.028

    Article  CAS  Google Scholar 

  33. Kovalev, I.A., Ogarkov, A.I, Shokod’ko, A.V., Shevtsov, S.V., Konovalov, A.A., Kannykin, S.V., Ashmarin, A.A., Kochanov, G.P., Chernyavskii, A.S., and Solntsev, K.A., Structural and phase transformations in compact titanium nitride-based ceramics during high-temperature heating in gaseous media, Inorg. Mater., 2019, vol. 55, no. 8, pp. 851–855. https://doi.org/10.1134/S0002337X19070091

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 19-19-00555. https://rscf.ru/project/19-19-00555/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Blinkov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blinkov, I.V., Sergevnin, V.S., Chernogor, A.V. et al. Structure, Mechanical Properties, Thermal Stability, and Chemical Stability of Metastable Ti1 – xAlxN (x = 0.03–0.05) Solid Solutions Prepared as Arc PVD Coatings on WC–Co Alloys. Inorg Mater 58, 1017–1027 (2022). https://doi.org/10.1134/S002016852210003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852210003X

Keywords:

Navigation