Skip to main content
Log in

Direct Synthesis of Copper and Copper Oxide Nanoparticles from Bulk Materials by the Induction Flow Levitation Technique

  • Published:
Inorganic Materials Aims and scope

Abstract—

Cu, Cu@Cu2O, and CuO nanoparticles have been prepared by the induction flow levitation method using bulk copper. The method offers a number of advantages, such as a high production rate, continuity of the nanoparticle synthesis process, the ability to vary the nanoparticle size in a wide range, and contactless heating, which ensures high purity of the synthesis product. To obtain nanoparticles with a core–shell structure and copper oxide nanoparticles, oxygen was introduced into different zones of the quartz reactor used. The synthesized nanoparticles have been characterized by a number of physicochemical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Feynman, R., Nanomaterials, Nanomaterials, 2009, pp. 1–20.

  2. Taylor, R., Coulombe, S., Otanicar, T., Phelan, P., Gunawan, A., Lv, W., Rosengarten, G., Prasher, R., and Tyagi, H., Small particles, big impacts: a review of the diverse applications of nanofluids, J. Appl. Phys., 2013, vol. 113, no. 1, p. 011301.

    Article  Google Scholar 

  3. Astruc, D., Introduction: nanoparticles in catalysis, Chem. Rev., 2020, vol. 120, no. 2, pp. 461–463.

    Article  CAS  PubMed  Google Scholar 

  4. Malekzad, H., Sahandi Zangabad, P., Mirshekari, H., Karimi, M., and Hamblin, M., Noble metal nanoparticles in biosensors: recent studies and applications, Nanotechnol. Rev., 2017, vol. 6, no. 3, pp. 301–329.

    Article  CAS  PubMed  Google Scholar 

  5. Liu, S., Fu, S., Zhang, X., Wang, X., Kang, L., Han, X., Chen, X., Wu, J., and Liu, Y., UV-resistant holographic data storage in noble-metal/semiconductor nanocomposite films with electron-acceptors, Opt. Mater. Express, 2018, vol. 8, no. 5, pp. 1143–1153.

    Article  CAS  Google Scholar 

  6. Taylor, R., Phelan, P., Otanicar, T., Adrian, R., and Prasher, R., Nanofluid optical property characterization: towards efficient direct absorption solar collectors, Nanoscale Res. Lett., 2011, vol. 6, no. 1, pp. 1–11.

    Article  Google Scholar 

  7. Abass, S.M., Sunitha, S., Ashaq, S.M., Khadheer, P.S., and Choi, D., An overview of antimicrobial and anticancer potential of silver nanoparticles, J. King Saud Univ., Sci., 2022, vol. 34, no. 2, p. 101791.

    Google Scholar 

  8. Ullah, K.A., Chen, L., and Ge, G., Recent development for biomedical applications of magnetic nanoparticles, Inorg. Chem. Commun., 2021, vol. 134, p. 108995.

    Article  Google Scholar 

  9. Shahbazali, E., Hessel, V., Noël, T., and Wang, Q., Metallic nanoparticles made in flow and their catalytic applications in organic synthesis, Nanotechnol. Rev., 2014, vol. 3, no. 1, pp. 65–86.

    Article  CAS  Google Scholar 

  10. Ojha, N., Zyryanov, G., Majee, A., Charushin, V., Chupakhin, O., and Santra, S., Copper nanoparticles as inexpensive and efficient catalyst: a valuable contribution in organic synthesis, Coord. Chem. Rev., 2017, vol. 353, pp. 1–57.

    Article  CAS  Google Scholar 

  11. Fathima, J., Pugazhendhi, A., Oves, M., and Venis, R., Synthesis of eco-friendly copper nanoparticles for augmentation of catalytic degradation of organic dyes, J. Mol. Liq., 2018, vol. 260, pp. 1–8.

    Article  CAS  Google Scholar 

  12. Kang, J., Kim, H., Ryu, J., Thomas, H.H., Jang, S., and Joung, J., Inkjet printed electronics using copper nanoparticle ink, J. Mater. Sci. Mater. Electron., 2010, vol. 21, no. 11, pp. 1213–1220.

    Article  CAS  Google Scholar 

  13. Kubota, S., Morioka, T., Takesue, M., Hayashi, H., Watanabe, M., and Smith, R., Continuous supercritical hydrothermal synthesis of dispersible zero-valent copper nanoparticles for ink applications in printed electronics, J. Supercrit. Fluids, 2014, vol. 86, pp. 33–40.

    Article  CAS  Google Scholar 

  14. Kruk, T., Szczepanowicz, K., Stefanska, J., Socha, R., and Warszynski, P., Synthesis and antimicrobial activity of monodisperse copper nanoparticles, Colloids Surf. B, 2015, vol. 128, pp. 17–22.

    Article  CAS  Google Scholar 

  15. Rajeshkumar, S., Menon, S., Venkat, K.S., Tambuwala, M., Bakshi, H., Mehta, M., Satija, S., Gupta, G., Chellappan, D., Thangavelu, L., and Dua, K., Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract, J. Photochem. Photobiol., 2019, vol. 197, p. 111531.

    Article  CAS  Google Scholar 

  16. Calabrese, C., La, P.V., Testa, M., and Liotta, L., Antifouling and antimicrobial activity of Ag, Cu and Fe nanoparticles supported on silica and titania, Inorg. Chim. Acta, 2022, vol. 529, p. 120636.

    Article  CAS  Google Scholar 

  17. Yabuki, A. and Tanaka, S., Oxidation behavior of copper nanoparticles at low temperature, Mater. Res. Bull., 2011, vol. 46, no. 12, pp. 2323–2327.

    Article  CAS  Google Scholar 

  18. Kim, I., Kim, Y., Woo, K., Ryu, E., Yon, K., Cao, G., and Moon, J., Synthesis of oxidation-resistant core–shell copper nanoparticles, RSC Adv., 2013, vol. 3, no. 35, pp. 15169–15177.

    Article  CAS  Google Scholar 

  19. Wang, H., Cheng, S., Cai, X., Cheng, L., Zhou, R., Hou, T., and Li, Y., Photocatalytic CO2 reduction to HCOOH over core–shell Cu@Cu2O catalysts, Catal. Commun., 2022, vol. 162, p. 106372.

    Article  CAS  Google Scholar 

  20. Kalidindi, S.B., Sanyal, U., and Jagirdar, B.R., Nanostructured Cu and Cu@Cu2O core shell catalysts for hydrogen generation from ammonia-borane, Phys. Chem. Chem. Phys., 2008, vol. 10, no. 38, pp. 5870–5874.

    Article  CAS  PubMed  Google Scholar 

  21. Mayyas, A., Wei, M., and Levis, G., Hydrogen as a long-term, large-scale energy storage solution when coupled with renewable energy sources or grids with dynamic electricity pricing schemes, Int. J. Hydrogen Energy, 2020, vol. 45, no. 33, pp. 16311–16325.

    Article  CAS  Google Scholar 

  22. Sadrolhosseini, A., Noor, A., Shameli, K., Mamdoohi, G., Moksin, M., and Adzir, M.M., Laser ablation synthesis and optical properties of copper nanoparticles, J. Mater. Res., 2013, vol. 28, no. 18, pp. 2629–2636.

    Article  CAS  Google Scholar 

  23. Khayati, G., Nourafkan, E., Karimi, G., and Moradgholi, J., Synthesis of cuprous oxide nanoparticles by mechanochemical oxidation of copper in high planetary energy ball mill, Adv. Powder Technol., 2013, vol. 24, no. 1, pp. 301–305.

    Article  CAS  Google Scholar 

  24. Richter, K., Birkner, A., and Mudring, A., Stabilizer-free metal nanoparticles and metal–metal oxide nanocomposites with long-term stability prepared by physical vapor deposition into ionic liquids, Angew. Chem., Int. Ed., 2010, vol. 49, no. 13, pp. 2431–2435.

    Article  CAS  Google Scholar 

  25. Jia, F., Zhang, L., Shang, X., and Yang, Y., Non-aqueous sol–gel approach towards the controllable synthesis of nickel nanospheres, nanowires, and nanoflowers, Adv. Mater., 2008, vol. 20, no. 5, pp. 1050–1054.

    Article  CAS  Google Scholar 

  26. Zhang, Q., Yang, Z., Ding, B., Lan, X., and Guo, Y., Preparation of copper nanoparticles by chemical reduction method using potassium borohydride, Trans. Nonferrous Met. Soc. China, 2010, vol. 20, suppl. 1, pp. s240–s244.

    Article  CAS  Google Scholar 

  27. Vijay, K.R., Elgamiel, R., Diamant, Y., Gedanken, A., and Norwig, J., Sonochemical preparation and characterization of nanocrystalline copper oxide embedded in poly(vinyl alcohol) and its effect on crystal growth of copper oxide, Langmuir, 2001, vol. 17, no. 5, pp. 1406–1410.

    Article  Google Scholar 

  28. Huang, L., Jiang, H., Zhang, J., Zhang, Z., and Zhang, P., Synthesis of copper nanoparticles containing diamond-like carbon films by electrochemical method, Electrochem. Commun., 2006, vol. 8, no. 2, pp. 262–266.

    Article  CAS  Google Scholar 

  29. Markov, A.N., Vorotyntsev, A.V., and Andronova, A.A., Direct synthesis of titanium nanoparticles by induction flow levitation technique, Key Eng. Mater., 2021, vol. 887, pp. 178–183.

    Article  Google Scholar 

  30. Kuskov, M., Zhigach, A., Leipunsky, I., Afanasenkova, E., Safronova, O., Berezkina, N., and Vorobjeva, G., Synthesis of nanopowders of titanium compounds via flow-levitation method and study their properties, IOP Conf. Ser. Mater. Sci. Eng., 2019, vol. 558, no. 1, p. 012023.

Download references

Funding

This work was supported in part by the Russian Federation Ministry of Science and Higher Education (optimization of the operation of the experimental setup, research project no. FSWR-2022-0008) and Lobachevsky State University (physicochemical characterization of the materials, Priority 2030 Academic Leadership Program, project no. N-474-99, 2021–2023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vorotyntsev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapinos, A.A., Markov, A.N., Petukhov, A.N. et al. Direct Synthesis of Copper and Copper Oxide Nanoparticles from Bulk Materials by the Induction Flow Levitation Technique. Inorg Mater 58, 931–938 (2022). https://doi.org/10.1134/S0020168522090060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522090060

Keywords:

Navigation