Skip to main content
Log in

Composition of Rhenium Heptasulfide Prepared by Different Methods

  • Published:
Inorganic Materials Aims and scope

Abstract—

Re2S7 samples have been synthesized by thiosulfate, sulfide. and thioacetamide processes and shown to differ very little in composition. Their composition has been determined by chemical analysis, IR spectroscopy, and X-ray photoelectron spectroscopy (XPS). According to chemical analysis data, the samples contain an excess of sulfur compared to the stoichiometric composition Re2S7. According to IR spectroscopy results, the synthesized Re2S7 samples contain water, hydrogen sulfate ions, and thioperrhenate ions. XPS results demonstrate the presence of sulfide, disulfide, and sulfate ions on the surface of Re2S7. In addition, the rhenium in the synthesized samples is in an odd oxidation state. Possible causes of distinctions between the structural models of Re2S7 proposed in the literature are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ryashentseva, M.A., Rhenium-containing catalysts in reactions of organic compounds, Russ. Chem. Rev., 1998, vol. 67, no. 2, pp. 157–177. https://doi.org/10.1070/RC1998v067n02ABEH000390

    Article  Google Scholar 

  2. Manuilov, B.M. and Ermakov, A.V., Preparation and properties of nanocolloidal rhenium sulfide solution for lymphoscintigraphic methods of micrometastase examination, Appl. Biochem. Microbiol., 2017, vol. 53, no. 8, pp. 823–826. https://doi.org/10.1134/S000368381708004X

    Article  CAS  Google Scholar 

  3. Palant, A.A., Troshkina, I.D., and Chekmarev, A.M., Metallurgiya reniya (Metallurgy of Rhenium), Moscow: Nauka, 2007.

  4. Borisova, L.V. and Ermakov, A.N., Analiticheskaya khimiya reniya (Analytical Chemistry of Rhenium), Moscow: Nauka, 1974.

  5. Handbuch der präparativen anorganischen Chemie, von Brauer, G., Ed., Stuttgart: Ferdinand Enke, 1981, 3rd ed., B. 3.

  6. Antipkin, N.R. and Bogorodskaya, M.A., Kinetic characteristics of a perrhenate–thiosulfate exchange reaction, Usp. Khim. Khim. Tekhnol., 2011, vol. 25, no. 6, pp. 105–110.

    Google Scholar 

  7. Yudenich, D.M., Concerning rhenium determination in solutions, Trudy II vsesoyuznogo soveshchaniya po probleme reniya (Proc. II All-Union Conf. on Rhenium), Moscow: Nauka, 1964, pp. 236–238.

  8. Rode, E.Ya. and Lebedev, B.A., Physicochemical study of rhenium sulfides, Zh. Neorg. Khim., 1961, vol. 6, no. 5, pp. 1198–1203.

    Google Scholar 

  9. Bilyalova, G.A., Kuznechenkova, N.S., and Bogorodskaya, M.A., Optimization of synthesis and purification of Re2S7 sol as a carrier for the first Russian 99mTc nanocolloid, Usp. Khim. Khim. Tekhnol., 2007, vol. 21, no. 8, pp. 9–13.

    Google Scholar 

  10. Pawlak, D.W., Parus, J.L., Skwarek, E., and Janusz, W., A study of selected properties of rhenium sulphide dispersion, Physicochem. Probl. Miner. Process., 2014, vol. 50, no. 1, pp. 387–397.

    CAS  Google Scholar 

  11. Pal’chevskaya, T.A., Bogutskaya, L.V., and Belousov, V.M., Effect of the process used to prepare rhenium heptasulfide on its catalytic properties for hydrogenation of nitrobenzene and m-nitrobenzoic acid, Ukr. Khim. Zh., 1989, vol. 55, no. 3, pp. 240–243.

    Google Scholar 

  12. Chernov, V.I., Medvedeva, A.A., Sinilkin, I.G., Zel’chan, R.V., Bragina, O.D., and Skuridin, V.S., Practice of the development of innovative radiopharmaceutical agents at the Tomsk Research Institute of Oncology, Sib. Onkol. Zh., 2015, suppl. 2, pp. 45–47.

  13. Bogorodskaya, M.A., Radiometric analysis for rhenium in the synthesis of nanoparticles, Vestn. Tekhnol. Univ., 2020, vol. 23, no. 8, pp. 5–10.

    Google Scholar 

  14. Ryashentseva, M.A. and Minachev, Kh.M., Renii i ego soedineniya v geterogennom katalize (Rhenium and Its Compounds in Heterogeneous Catalysis), Moscow: Nauka, 1983.

  15. Nefedov, V.I., Sergushin, N.P., and Ryashentseva, M.A., X-ray photoelectron spectroscopy study of rhenium sulfide catalysts, Dokl. Akad. Nauk SSSR, 1973, vol. 213, no. 3, pp. 600–602.

    CAS  Google Scholar 

  16. Ryashentseva, M.A. and Nefedov, V.I., X-ray photoelectron spectroscopy study of rhenium sulfides, Izv. Akad. Nauk SSSR, Ser. Khim., 1973, no. 7, pp. 1642–1644.

  17. Breusov, O.N. and Lavrent’eva, V.G., Rhenium heptasulfide, in Metody polucheniya khimicheskikh reaktivov i preparatov (Methods for the Preparation of Chemical Reagents and Products), Moscow: IREA, 1967, pp. 180–181.

  18. Taratanov, N.A., Yurkov, G.Yu., Koksharov, Yu.A., and Buznik, V.M., Preparation and properties of composite materials based on rhenium-containing nanoparticles and micrograins of polytetrafluoroethylene, Inorg. Mater.: Appl. Res., 2011, vol. 2, pp. 118–124. https://doi.org/10.1134/S2075113311020201

    Article  Google Scholar 

  19. Traore, K. and Brenet, J.P., Sur la structure cristalline de Re2S7, Bull. Soc. Fr. Mineral. Cristallogr., 1959, vol. 82, nos. 7–9, p. 323.

    Google Scholar 

  20. Traore, K. and Brenet, J.P., Preparation et quelques proprietes physicochimiques de l’heptasulfure de rhenium, C. R. Acad. Sci., 1959, vol. 249, no. 2, pp. 280–282.

    CAS  Google Scholar 

  21. Chernyak, A.S., Yas’ko, T.N., Karnaukhova, V.K., Shepot’ko, M.L., and Rozhkova, E.A., Synthesis and characterization of cesium tantalum sulfates, Zh. Neorg. Khim., 1982, vol. 27, no. 10, pp. 2503–2509.

    CAS  Google Scholar 

  22. Baran, J., Ilczyszyn, M.M., Marchewka, M.K., and Ratajczak, H., Vibrational studies of different modifications of the sodium hydrogen sulphate crystals, Spectrosc. Lett., 1999, vol. 32, no. 1, pp. 83–102. https://doi.org/10.1080/00387019909349969

    Article  CAS  Google Scholar 

  23. Müller, A., Schmidt, K.H., and Ahlborn, E., Schwingungsspektrum und Normalkoordinatenanalyse von CrO3Br zur Zuordnung der Schwingungsspektren von Molekulen und Ionen des Typs MO3Xn (M = Cr, Mn, Tc, Re; X = F, Cl, Br, S; n = 0, 1), Spectrochim. Acta, Part A, 1973, vol. 29, pp. 1773–1788. https://doi.org/10.1016/0584-8539(73)80164-3

    Article  Google Scholar 

  24. Krebs, B., Müller, A., and Beyer, H., Darstellung, Struktur und Eigenschaften von Alkali-Monothioperrhenaten, Z. Anorg Allg. Chem., 1968, vol. 362, nos. 1–2, pp. 44–50. https://doi.org/10.1002/zaac.19683620108

    Article  CAS  Google Scholar 

  25. Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D., Handbook of X-ray Photoelectron Spectroscopy, Eden Prairie: PerkinElmer, 1992.

  26. Wagner, C.D., Naumkin, A.V., Kraut-Vass, A., Allison, J.W., Powell, C.J., and Rumble, J.R., Jr., NIST Standard Reference Database 20, Version 3.4 (web version), 2003. http://srdata.nist.gov/xps/.

  27. Davis, S.M., Photoemission studies of rhenium disulfide oxidation: altered core–level structure and reactivity of defect sites, Catal. Lett., 1989, vol. 2, pp. 1–8. https://doi.org/10.1007/BF00765324

    Article  CAS  Google Scholar 

  28. Siegbahn, K., Nordling, C., Fahlman, A., Nordberg, R., Hamrin, K., Hedman, J., Johansson, G., Bergmark, T., Karlsson, S., Lindgren, I., and Lindberg, B., ESCA: Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy, Uppsala: Almqvist & Wiksells, 1967.

    Google Scholar 

  29. Muller, A., Krickemeyer, E., Bogge, H., Ratajczak, H., and Armatage, A., A building principle of amorphous chalcogenides of transition metals: the “extrusion” of the electron-rich cluster [Re4S2(SO2)4(CN)10]8− from a-Re2S7, Angew. Shem. Int. Ed. Engl., 1994, vol. 106, no. 7, pp. 800–803. https://doi.org/10.1002/anie.199407701

    Article  Google Scholar 

  30. Hibble, S.J. and Walton, R.I., X-ray absorption studies of amorphous Re2S7, Chem. Commun., 1996, no. 18, pp. 2135–2136. https://doi.org/10.1039/CC9960002135

  31. Hibble, S.J., Walton, R.I., Feaviour, M.R., and Smith, A.D., Sulfur–sulfur bonding in the amorphous sulfides WS3, WS5, and Re2S7 from sulfur K-edge EXAFS studies, J. Chem. Soc., Dalton Trans., 1999, no. 16, pp. 2877–2883. https://doi.org/10.1039/A903918J

  32. Schwarz, D., Frenkel, A., Nuzzo, R., Rauchfuss, T., and Vairavamurthy, A., Electrosynthesis of ReS4. XAS analysis of ReS2, Re2S7, and ReS4, Chem. Mater., 2004, vol. 16, no. 1, pp. 151–158. https://doi.org/10.1021/cm034467v

    Article  CAS  Google Scholar 

  33. Cai, X., Kong, L., Hu, X., and Peng, X., Recovery of Re(VII) from strongly acidic wastewater using sulphide: acceleration by UV irradiation and the underlying mechanism, J. Hazard. Mater., 2021, vol. 416, p. 126233. https://doi.org/10.1016/j.jhazmat.2021.126233

    Article  CAS  PubMed  Google Scholar 

  34. German, K.E., Shiryaev, A.A., Safonov, A.V., Obruchnikova, Y.A., Ilin, V.A., and Tregubova, V.E., Technetium sulfide – formation kinetics, structure and particle speciation, Radiochem. Acta, 2015, vol. 103, no. 3, pp. 199–203. https://doi.org/10.1515/ract-2014-2369

    Article  CAS  Google Scholar 

  35. German, K.E., Obruchnikova, Ya.A., Safonov, A.V., Tregubova, V.E., Afanas’ev, A.V., Kopytin, A.V., Kryzhovets, O.S., Puano, F., Abkhalimov, E.V., and Shiryaev, A.A., Kinetics of the formation of precipitates and the physicochemical properties of technetium-99 and rhenium sulfides according to small-angle X-ray scattering and ultramicrocentrifugation data, Russ. J. Inorg. Chem., 2016, vol. 61, no. 11, pp. 1445–1450. https://doi.org/10.1134/S0036023616110061

    Article  CAS  Google Scholar 

  36. Lukens, W.W., Bucher, J.J., Shuh, D.K., and Edelstein, N.M., Evolution of technetium speciation in reducing grout, Environ. Sci. Technol., 2005, vol. 39, pp. 8064–8070. https://doi.org/10.1021/es050155c

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, scientific project no. 20-33-90217.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Egorov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egorov, N.B., Isaeva, E.A. Composition of Rhenium Heptasulfide Prepared by Different Methods. Inorg Mater 58, 899–905 (2022). https://doi.org/10.1134/S0020168522090047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522090047

Keywords:

Navigation