Skip to main content
Log in

Electrical Conductivity of Sodium Sulfate-Based Phases

  • Published:
Inorganic Materials Aims and scope

Abstract

We have synthesized and investigated sodium sulfate-based materials with Na+ ion conductivity: Na2SO4, Na2SO4:3.5% Yb, and Na3Ga(SO4)3. The addition of Yb3+ heterovalent cations leads to a considerable increase in the electrical conductivity of Na2SO4 (by ~240 times at 573 K) as a result of sodium vacancy formation and stabilization of the high-temperature (hexagonal) phase (sp. gr. P63/mmc). The sodium vacancy concentration and mobility in the (Na0.895Yb0.035)2SO4 solid solution are nvac = 7.93 × 1020 cm−3 and μvac = 2.7 × 10−5 cm2/(V s) (573 K), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Ivanov-Shitz, A.K. and Murin, I.V., Ionika tverdogo tela (Solid-State Ionics), St. Petersburg: Sankt-Peterburgsk. Univ., 2010.

  2. Yaroslavtsev, A.B., Principal directions in the development and characterization of solid electrolytes, Usp. Khim., 2016, vol. 85, no. 11, pp. 1255–1276.

    Article  CAS  Google Scholar 

  3. Skundin, A.M., Kulova, T.L., and Yaroslavtsev, A.B., Sodium-ion batteries, Russ. J. Electrochem., 2018, vol. 54, no. 2, pp. 113–152.

    Article  CAS  Google Scholar 

  4. Novikova, S.A., Larkovich, R.V., Chekannikov, A.A., Kulova, T.L., Skundin, A.M., and Yaroslavtsev, A.B., Electrical conductivity and electrochemical characteristics of Na3V2(PO4)3-based NASICON-type materials, Inorg. Mater., 2018, vol. 54, no. 8, pp. 794–804. https://doi.org/10.1134/S0020168518080149

    Article  CAS  Google Scholar 

  5. Buzlukov, A.L., Baklanova, Y.V., Arapova, I.Yu., Savina, A.A., Morozov, V.A., Bardet, M., Lazoryak, B.I., Khaikina, E.G., Denisova, T.A., and Medvedeva, N.I., Na9In(MoO4)6: synthesis, crystal structure, and Na+ ion diffusion, Ionics, 2021, vol. 27, pp. 4281–4293. https://doi.org/10.1007/s11581-021-04226-3

    Article  CAS  Google Scholar 

  6. Solodovnikov, S.F., Gulyaeva, O.A., Savina, A.A., Yudin, V.N., Buzlukov, A.L., Solodovnikova, Z.A., Zolotova, E.S., Spiridonova, T.S., Khaikina, E.G., Stefanovich, S.Yu., Medvedeva, N.I., Baklanova, Ya.V., and Denisova, T.A., Molybdates and tungstates of the alluaudite family: crystal chemistry, composition, and ion mobility, Zh. Strukt. Khim., 2022, vol. 63, no. 7, pp. 975–1010. https://doi.org/10.26902/JSC_id96516

    Article  Google Scholar 

  7. Heed, B., Lunden, A., and Schroeder, K., Sulphate-based solid electrolytes: properties and applications, Electrochem. Acta, 1977, vol. 22, pp. 705–707.

    Article  CAS  Google Scholar 

  8. Lunden, A., Ion transport in lithium, sodium, and silver sulphates, Solid State Ionics: New Developments, Chowdari, B.V.R, et al., Eds., Singapore: World Scientific, 1996, pp. 23–42.

  9. Lunden, A., Enhancement of cation mobility in some sulphate phases due to a paddle wheel mechanism, Solid State Ionics, 1998, vols. 28–30, pp. 163–167. https://doi.org/10.1016/S0167-2738(98)80026-2

    Article  Google Scholar 

  10. Eysel, W., Hofer, H.H., Keester, K.L., and Hahn, Th., Crystal chemistry and structure of Na2SO4(I) and its solid solutions, Acta Crystallogr., Sect. B: Struct. Sci., 1985, vol. 41, pp. 5–11.

    Article  Google Scholar 

  11. Bobade, S.M., Gopalan, P., and Kulkarni, A.R., Phase transition in Na2SO4: all five polymorphic transformations in DSC, Ionics, 2009, vol. 15, pp. 353–355.

    Article  CAS  Google Scholar 

  12. Rasmussen, S.E., Jorgensen, J.-E., and Lundtoft, B., Structures and phase transitions of Na2SO4, J. Appl. Crystallogr., 1996, vol. 29, pp. 42–47.

    Article  CAS  Google Scholar 

  13. Kracek, F.C. and Ksanda, C.J., The polymorphism of sodium sulfate: X-ray analysis, J. Phys. Chem., 1930, vol. 34, pp. 1741–1744.

    Article  Google Scholar 

  14. Mehorta, B.N., The crystal structure of Na2SO4 III, Z. Kristallogr., 1981, vol. 155, pp. 159–163.

    Google Scholar 

  15. Nord, A.G., Refinement of the crystal structure of thenardite Na2SO4(V), Acta Chem. Scand., 1973, vol. 27, pp. 814–822.

    Article  CAS  Google Scholar 

  16. Ahmad, M.M., Ionic conduction and dielectric relaxation in polycrystalline Na2SO4, Solid State Ionics, 2006, vol. 177, pp. 21–28. https://doi.org/10.1016/j.ssi.2005.10.007

    Article  CAS  Google Scholar 

  17. Choi, B.C., Ionic conductivity of Na2SO4(I) crystals, Solid State Ionics, 1992, vol. 58, pp. 133–138. https://doi.org/10.1016/0167-2738(92)90020-P

    Article  CAS  Google Scholar 

  18. Choi, B.C. and Lockwood, D.J., Ionic conductivity and the phase transitions in Na2SO4, Phys. Rev. B: Condens. Matter Mater. Phys., 1989, vol. 40, pp. 4683–4689.

    Article  CAS  Google Scholar 

  19. Careem, M.A. and Mellander, B.E., Electrical conductivity of Na2SO4(I), Solid State Ionics, 1985, vol. 15, pp. 327–330. https://doi.org/10.1016/0167-2738(85)90136-5

    Article  CAS  Google Scholar 

  20. Saito, Y., Kobayashi, K., and Maruyama, T., Phase transition and electrical properties of Na2SO4, Solid State Ionics, 1981, vols. 3–4, pp. 393–396. https://doi.org/10.1016/0167-2738(81)90119-3

    Article  Google Scholar 

  21. Diosa, J., Lara, D.P., and Vargas, R., Origin of dielectric relaxations in Na2SO4 in the intermediate temperature regime, J. Phys. Chem. Solids, 2013, vol. 74, no. 7, pp. 1017–1020. https://doi.org/1016/j.jpcs.2013.02.024

    Article  CAS  Google Scholar 

  22. Iqbal, M.Z. and Rafiuddin, Preparation, characterization, electrical conductivity and dielectric studies of Na2SO4 and V2O3 composite solid electrolytes, Measurement, 2016, vol. 81, pp. 102–112. https://doi.org/10.1016/j.measurement.2015.12.008

    Article  Google Scholar 

  23. Sujatha, B., Viswanatha, R., Chethana, B., Nagabhushana, H., and Narayana Reddy, C., Electrical conductivity and dielectric relaxation studies on microwave synthesized Na2SO4–NaPO3–MoO3 glasses, Ionics, 2016, vol. 24, no. 4, pp. 563–571. https://doi.org/10.1007/S11581-015-1580-2

    Article  Google Scholar 

  24. Fedorov, P.P., Polkhovskaya, T.M., Sobolev, B.P., Ivanov-Shitz, A.K., and Sorokin, N.I., Growth and electrical conductivity of a Na2SO4:Nd3+ single crystal, Kristallografiya, 1983, vol. 28, no. 3, pp. 598–599.

    CAS  Google Scholar 

  25. Shahi, K. and Prakash, G., Some Na2SO4-based fast ion conductors, Solid State Ionics, 1986, vol. 18, pp. 544–548. https://doi.org/10.1016/0167-2738(86)90175-X

    Article  Google Scholar 

  26. Gomathy, S., Gopalan, P., and Kulkarn, A.R., Effect of homovalent anion doping on the conductivity and phase transitions in Na2SO4, J. Solid State Chem., 1999, vol. 146, no. 6, pp. 6–12.

    Article  CAS  Google Scholar 

  27. Leblanc, M.D., Gundsharma, U.M., and Secco, E.A., Electrical conductivity of superionic solid solutions of Na2SO4 with Mx(XO4)y [M = Na, K, Rb, Cd, Gd and X=W, Mo, S, Si; x = 1, 2, 4 and y = 1, 3], Solid State Ionics, 1986, vol. 20, pp. 61–68. https://doi.org/10.1016/0167-2738(86)90035-4

    Article  CAS  Google Scholar 

  28. Secco, E.A. and Usha, M.G., Cation conductivity in mixed sulfate-based composition of Na2SO4, Ag2SO4, and Li2SO4, Solid State Ionics, 1994, vol. 68, pp. 213–219. https://doi.org/10.1016/0167-2738(94)90178-3

    Article  CAS  Google Scholar 

  29. Dharmasena, G. and Frech, R., The stabilization of phase III and phase I in sodium sulfate by aliovalent cation substitution, J. Chem. Phys., 1993, vol. 99, pp. 8929–8935.

    Article  CAS  Google Scholar 

  30. Rao, N., Schoonman, J., and Sorensen, O.T., Na2SO4-based solid electrolytes for SOx sensors, Solid State Ionics, 1992, vol. 57, pp. 159–168. https://doi.org/10.1016/0167-2738(92)90079-5

    Article  CAS  Google Scholar 

  31. Leushina, A.P. and Mamontova, E.V., Synthesis and transport properties of (Na2SO4)1 – x(Ga2(SO4)3)x solid electrolytes and gallium doping of lead telluride, Izv. Vyssh. Uchebn. Zaved.: Prikl. Khim. Biotekhnol., 2017, vol. 7, no. 2, pp. 33–42.

    Google Scholar 

  32. Proydakova, V.Yu., Voronov, V.V., Pynenkov, A.A., Kuznetsov, S.V., Zykova, M.P., Nishchev, K.N., and Fedorov, P.P., Sodium sulfate polymorphism, Russ. J. Inorg. Chem., 2022, vol. 67, no. 7, pp. 970–977. https://doi.org/10.1134/S0036023622070208

    Article  CAS  Google Scholar 

  33. Fedorov, P.P., Proydakova, V.Yu., Kuznetsov, S.V., Voronov, V.V., Pynenkov, A.A., and Nishchev, K.N., Phase diagram of the Li2SO4–Na2SO4 system, J. Am. Ceram. Soc., 2020, vol. 103, no. 5, pp. 3390–3400. https://doi.org/10.1111/jace.16996

    Article  CAS  Google Scholar 

  34. Tsvetkov, V.B., Proidakova, V.Yu., Kuznetsov, S.V., Subbotin, K.A., Lis, D.A., Yapryntsev, D.A., Ivanov, V.K. and Fedorov, P.P., Growth of Yb:Na2SO4 crystals and study of their spectral – luminescent characteristics, Quantum Electron., 2019, vol. 49, no. 11, pp. 1008–1011. https://doi.org/10.1070/QEL17107

    Article  CAS  Google Scholar 

  35. Fedorov, P.P., Proidakova, V.Yu., Kuznetsov, S.V., and Voronov, V.V., Phase equilibria in systems of gallium sulfate with lithium or sodium sulfate, Russ. J. Inorg. Chem., 2017, vol. 62. no. 11, pp. 1508–1513. https://doi.org/10.1134/S0036023617110067

    Article  CAS  Google Scholar 

  36. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767.

    Article  Google Scholar 

  37. Chizhov, S.M., Physicochemical study of sodium rare-earth double sulfates, Cand. Sci. (Chem.) Dissertation, Moscow: Moscow State Univ., 1980.

  38. Pokrovskii, A.N., Synthesis, structure, and properties of anhydrous double sulfides of lanthanides and Group Ia elements, Doctoral (Chem.) Dissertation, Moscow: Moscow State Univ., 1981.

  39. Filatov, S.K., Vysokotemperaturnaya kristallokhimiya. Teoriya, metody i rezul’taty issledovanii (High-Temperature Crystal Chemistry: Theory, Methods, and Investigation Results), Leningrad: Nedra, 1990.

  40. Fedorov, P.P. and Sobolev, B.P., Conditions for the formation of maxima on the fusion curves of solid solutions in salt systems, Russ. J. Inorg. Chem., 1979, vol. 24, no. 4, pp. 574–575.

    Google Scholar 

  41. Fedorov, P.P. and Sobolev, B.P., Connection of the fast ionic conductivity with the maxima on the melting curves of the heterovalent solid solutions, IV Int. Conf. on Solid State Ionics, Grenoble, 1983, p. 63.

  42. Fedorov, P.P., Heterovalent isomorphism and solid solutions with a variable number of ions in the unit cell, Russ. J. Inorg. Chem., 2000, vol. 45, suppl. 3, pp. S268–S291.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

In this study, we used equipment at the Shared Research Facilities Center, Prokhorov General Physics Institute of the Russian Academy of Sciences, and the Shared Research Facilities Center, Shubnikov Institute of Crystallography, Crystallography and Photonics Federal Research Center, Russian Academy of Sciences.

Funding

This work was supported by the Prokhorov General Physics Institute of the Russian Academy of Sciences, and the Shubnikov Institute of Crystallography, Crystallography and Photonics Federal Research Center, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Fedorov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorokin, N.I., Proydakova, V.Y., Voronov, V.V. et al. Electrical Conductivity of Sodium Sulfate-Based Phases. Inorg Mater 58, 806–813 (2022). https://doi.org/10.1134/S0020168522080118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522080118

Keywords:

Navigation