Skip to main content
Log in

A Study of Vacuum Arc Deposition Parameters and Their Effect on the Structural and Optical Properties of NiO Nanoparticles

  • Published:
Inorganic Materials Aims and scope

Abstract—

NiO nanoparticles have been synthesized in a low-pressure arc discharge plasma at a gas mixture pressure in the chamber of 70 Pa, using argon as a plasma gas. The nanoparticles were deposited on a substrate at temperatures of 300, 400, 500, and 600 K. The deposition time was 30 min. X-ray diffraction characterization showed that the synthesized NiO nanoparticles were polycrystalline at all of the deposition temperatures. The nanoparticles ranged in size from 3.2 to 32.7 nm. We have studied the optical properties of the synthesized nanoparticles. The results demonstrate that their band gap decreases linearly with increasing nanoparticle size, ranging from 2.91 to 1.93 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Shehata, M.M., Youssef, W.M., Mahmoud, H.H., and Masoud, A.M., Sol–gel synthesis of NiO/CuO nanocomposites for uptake of rare earth elements (Ho, Yb, and Sm) from aqueous solutions, Russ. J. Inorg. Chem., 2020, vol. 65, no. 2, pp. 279–289. https://doi.org/10.1134/S0036023620020163

    Article  CAS  Google Scholar 

  2. Chen, W., Wu, Y.H., Fan, J., Djurisic, A.B., Liu, F.Z., Tam, H.W., Ng, A., Surya, C., Chan, W.K., Wang, D., and He, Z.B., Understanding the doping effect on NiO: toward high-performance inverted perovskite solar cells, Adv. Energy Mater., 2018, vol. 8, no. 19, paper 1703519. https://doi.org/10.1002/aenm.201703519

  3. Yun, N., Park, J.J., Park, O.O., Lee, K.B., and Yang, J.H., Electrocatalytic effect of NiO nanoparticles evenly distributed on a graphite felt electrode for vanadium redox flow batteries, Electrochim. Acta, 2018, vol. 278, pp. 226–235. https://doi.org/10.1016/j.electacta.2018.05.039

    Article  CAS  Google Scholar 

  4. Simonenko, T.L., Ivanova, V.M., Simonenko, N.P., Simonenko, E.P., Sevastyanov, V.G., and Kuznetsov, N.T., Obtaining of NiO nanosheets by a combination of sol–gel technology and hydrothermal treatment using nickel acetylacetonate as a precursor, Russ. J. Inorg. Chem., 2019, vol. 64, no. 14, pp. 1753–1757. https://doi.org/10.1134/S0036023619140080

    Article  CAS  Google Scholar 

  5. Verma, V. and Katiyar, M., Effect of the deposition parameters on the structural and magnetic properties of pulsed laser ablated NiO thin films, Thin Solid Films, 2013, vol. 527, pp. 369–376. https://doi.org/10.1016/j.tsf.2012.12.020

    Article  CAS  Google Scholar 

  6. Nadeem, K., Asmat Ullah, Mushtaq, M., Kamran, M., Hussain, S.S., and Mumtaz, M., Effect of air annealing on structural and magnetic properties of Ni/NiO nanoparticles, J. Magn. Magn. Mater., 2016, vol. 417, pp. 6–10. https://doi.org/10.1016/j.jmmm.2016.05.064

    Article  CAS  Google Scholar 

  7. Ranjit, S.K., Suraj, C.B., and Ramesh, J.D., Effect of substrate temperature on properties of nickel oxide (NiO) thin films by spray pyrolysis, J. Electron. Mater., 2019, vol. 48, pp. 3220–3228.

    Article  Google Scholar 

  8. Sheena, P.A., Hitha, H., Sreedevi, A., and Varghese, T., Influence of finite size and surface effects on the structural, electrical and magnetic properties of nanostructured nickel oxide, J. Mater. Sci.: Mater. Electron., 2020, vol. 31, pp. 5769–5778. https://doi.org/10.1007/s10854-020-03147-7

    Article  CAS  Google Scholar 

  9. Makhlouf, S.A., Electrical properties of NiO films obtained by high-temperature oxidation of nickel, Thin Solid Films, 2008, vol. 516, pp. 3112–3116.

    Article  CAS  Google Scholar 

  10. Karpov, I.V., Ushakov, A.V., Lepeshev, A.A., and Fedorov, L.Yu., Plasma-chemical reactor based on a low-pressure pulsed arc discharge for synthesis of nanopowders, Tech. Phys., 2017, vol. 87, no. 1, pp. 168–173. https://doi.org/10.1134/S106378421701011X

    Article  CAS  Google Scholar 

  11. Ushakov, A.V., Karpov, I.V., Fedorov, L.Yu., Demin, V.G., Goncharova, E.A., Shaihadinov, A.A., Zeer, G.M., and Zharkov, S.M., The effect of microstructural features on the ferromagnetism of nickel oxide nanoparticles synthesized in a low-pressure arc plasma, Phys. E, 2020, vol. 124, paper 114352. https://doi.org/10.1016/j.physe.2020.114352

  12. Ushakov, A.V., Karpov, I.V., Zeer, G.M., Fedorov, L.Yu., Demin, V.G., and Goncharova, E.A., Effect of quenching rate on the crystalline and impedance properties of NiO nanoparticles, IEEE Trans. Dielectr. Electr. Insulat., 2020, vol. 27, no. 5, pp. 1486–1491. https://doi.org/10.1109/TDEI.2020.009110

    Article  CAS  Google Scholar 

  13. Aytan, E., Debnath, B., Kargar, F., Barlas, Y., Lacerda, M., Li, J., Lake, R., Shi, J., and Balandin, A., Spin–phonon coupling in antiferromagnetic nickel oxide, Appl. Phys. Lett., 2017, vol. 111, paper 252402. https://doi.org/10.1063/1.5009598

  14. Thema, F., Manikandan, E., Gurib, A., and Maaza, M., Single phase bunsenite NiO nanoparticles green synthesis by Agathosma betulina natural extract, J. Alloys Compd., 2016, vol. 657, pp. 655–661. https://doi.org/10.1016/j.jallcom.2015.09.227

    Article  CAS  Google Scholar 

  15. Tauc, J., Grigorovic, R., and Vancu, A., Optical properties and electronic structure of amorphous germanium, Phys. Status Solidi, 1966, vol. 15, pp. 627–637. https://doi.org/10.1002/pssb.19660150224

    Article  CAS  Google Scholar 

  16. Arif, M., Sanger, A., and Singh, A., Highly sensitive NiO nanoparticle based chlorine gas sensor, J. Electron. Mater., 2018, vol. 47, no. 7, pp. 3451–3458. https://doi.org/10.1007/s11664-018-6176-y

    Article  CAS  Google Scholar 

Download references

Funding

The work was performed with the support of the grant of the Russian Science Foundation (project No 20-19-00021).

The electron microscopy investigations were conducted in the SFU Joint Scientific Center supported by the State assignment (#FSRZ-2020-0011) of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Karpov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpov, I.V., Ushakov, A.V., Fedorov, L.Y. et al. A Study of Vacuum Arc Deposition Parameters and Their Effect on the Structural and Optical Properties of NiO Nanoparticles. Inorg Mater 58, 792–798 (2022). https://doi.org/10.1134/S0020168522080039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522080039

Keywords:

Navigation