Skip to main content
Log in

Optical Properties of Single Crystals and Nanoceramics of CaF2–SrF2–YbF3 Solid Solutions

  • Published:
Inorganic Materials Aims and scope

Abstract

We have studied the effect of gamma irradiation in a 60Co source on the optical properties of laser nanoceramics and single crystals with the composition 65CaF2⋅30SrF2⋅5YbF3 in comparison with CaF2:Yb3+ single crystals and nanoceramics. They have been shown to have similar spectral characteristics, and general and specific features of radiation-induced processes in these materials have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Sorokin, P. and Stevenson, M., Solid-state optical maser using divalent samarium in calcium fluoride, IBM J. Res. Dev., 1961, vol. 5, no. 1, pp. 56–58.

    Article  CAS  Google Scholar 

  2. Hatch, S.E., Parsons, W.F., and Weagley, R.J., Hot-pressed polycrystalline CaF2:Dy2+ laser, Appl. Phys. Lett., 1964, vol. 5, no. 8, pp. 153–154.

    Article  CAS  Google Scholar 

  3. Voron’ko, Yu.K., Osiko, V.V., Udovenchik, V.T., and Fursikov, M.M., optical properties of CaF2–Dy3+ crystals, Fiz. Tverd. Tela (Leningrad), 1965, vol. 7, no. 1, pp. 267–273.

    Google Scholar 

  4. Krupke, W.F., Ytterbium solid-state lasers. The first decade, IEEE J. Quantum Electron., 2000, vol. 6, no. 6, pp. 1287–1296.

    Article  CAS  Google Scholar 

  5. DeLoach, L.D., Payne, S.A., Chase, L.L., et al., Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications, IEEE J. Quantum Electron., 1993, vol. 29, pp. 1179–1190.

    Article  CAS  Google Scholar 

  6. Voron’ko, Yu.K., Osiko, V.V., and Shcherbakov, I.A., Optical centers and interaction of Yb3+ ions in cubic fluorite crystals, Zh. Eksp. Teor. Fiz., 1969, vol. 56, no. 1, pp. 151–160.

    Google Scholar 

  7. Cleven, G.D., Lee, S.H., and Wright, J.C., Clustering and percolation of defects in Pr3+:SrF2 using site-selective spectroscopy, Phys. Rev. B: Condens. Matter Mater. Phys., 1991, vol. 44, pp. 23–27.

    Article  CAS  Google Scholar 

  8. Siebold, M., Bock, S., Schramm, U., Xu, B., Doualan, J.L., Camy, P., and Moncorg’e, R., Yb:CaF2—a new old laser crystal, Appl. Phys. B, 2009, vol. 97, pp. 327–338.

    Article  CAS  Google Scholar 

  9. Akchurin, M.Sh., Basiev, T.T., Demidenko, A.A., Doroshenko, M.E., Fedorov, P.P., Garibin, E.A., Gusev, P.E., Kuznetsov, S.V., Krutov, M.A., Mironov, I.A., Osiko, V.V., and Popov, P.A., CaF2:Yb laser ceramics, Opt. Mater., 2013, vol. 35, pp. 444–450.

    Article  CAS  Google Scholar 

  10. Siebold, M., Hornung, M., Boedefeld, R., Podleska, S., Klingebiel, S., Wandt, C., Krausz, F., Karsch, S., Uecker, R., Jochmann, A., Hein, J., and Kaluza, M.C., Terawatt diode-pumped Yb:CaF2 laser, Opt. Lett., 2008, vol. 33, no. 23, pp. 2770–2772.

    Article  CAS  Google Scholar 

  11. Dannecker, B., Marwan Abdou Ahmed, and Graf, T., SESAM-mode-locked Yb:CaF2 thin-disk-laser generating 285 fs pulses with 1.78 μJ of pulse energy, Laser Phys. Lett., 2016, vol. 13, pp. 1–5.

    Article  Google Scholar 

  12. Basiev, T.T., Vasil’ev, S.V., Doroshenko, M.E., Konyushkin, V.A., Kuznetsov, S.V., Osiko, V.V., and Fedorov, P.P., Effective lasing of diode-pumped CaF2–SrF2:Yb3+ solid solution single crystals, Kvantovaya Elektron. (Moscow), 2007, vol. 37, no. 10, pp. 934–937.

    Article  CAS  Google Scholar 

  13. Fedorov, P.P. and Buchinskaya, I.I., Problems related to spatial uniformity of crystalline materials and a saddle point of congruent melting in ternary systems, Usp. Khim., 2012, vol. 81, no. 1, pp. 1–20.

    Article  CAS  Google Scholar 

  14. Stasyuk, V.A., A study of saddle points on the liquidus and solidus surfaces of ternary systems containing rare-earth trifluorides, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Moscow: Lomonosov Inst. of Chem. Eng., 1998.

  15. Burnett, J.H., Livene, Z.H., and Shirley, E.L., Intrinsic birefringence in calcium fluoride and barium fluoride, Phys. Rev. B: Condens. Matter Mater. Phys., 2001, vol. 64, no. 24, paper 241102.

  16. Kaminskii, A.A., Mikaelyan, R.G., and Zygler, I.N., Room-temperature induced emission of CaF2–SrF2 crystals containing Nd3+, Phys. Status Solidi B, 1969, vol. 31, no. 2, pp. 85–86.

    Article  Google Scholar 

  17. Fedorov, P.P., Buchinskaya, I.I., and Stasyuk, V.A., Congruently melting stationary points on the liquidus surface of ternary solid solutions, in Fizika kristallizatsii. K 100-letiyu Lemmleina (Physics of Crystallization: to the 100th Anniversary of Lemmlein), Moscow: Fiz. Mat. Lit., 2002, pp. 220–245.

  18. Kuznetsov, S.V., Aleksandrov, A.A., and Fedorov, P.P., Optical fluoride nanoceramics, Inorg. Mater., 2021, vol. 57, no. 6, pp. 555–578. https://doi.org/10.1134/S0020168521060078

    Article  CAS  Google Scholar 

  19. Ushakov, S.N., Uslamina, M.A., Nishchev, K.N., Fedorov, P.P., Kuznetsov, S.V., and Osiko, V.V., Study of Yb3+ optical centers in fluoride solid solution crystals CaF2–SrF2–YbF3, Opt. Spectrosc., 2020, vol. 128, no. 5, pp. 600–604.

    Article  CAS  Google Scholar 

  20. Liu, J., Feng, C., Su, L.B., Jiang, D.P., Zheng, L.H., Qian, X.B., Wang, J.Y., Xu, J., and Wa, Y.G., Characteristics of a diode-pumped Yb:CaF2–SrF2 mode-locked laser using a carbon nanotube absorber, Laser Phys. Lett., 2013, vol. 10, paper 105806.

  21. Ashurov, M.Kh., Nuritdinov, I., and Boiboboeva, S.T., Radiation-stimulated Yb3+ ↔ Yb2+ and Yb3+ ↔ Yb3+ transformations in CaF2–YbF3 single crystals and nanoceramics, Dokl. Akad. Nauk Respubl. Uzbekistan, 2019, no. 1, pp. 11–14.

  22. Nicoaraa, I., Lighezana, L., Enculescub, M., and Enculescub, I., Optical spectroscopy of Yb2+ ions in YbF3-doped CaF2 crystals, J. Cryst. Growth, 2008, vol. 310, pp. 2026–2032.

    Article  Google Scholar 

  23. Kaczmarek, S.M., Tsuboi, T., Ito, M., Boulon, G., and Leniec, G., Optical study of Yb3+/Yb2+ conversion in CaF2 crystals, J. Phys.: Condens. Matter, 2005, vol. 17, pp. 3771–3786.

    CAS  Google Scholar 

  24. Ito, M., Gotaudier, C., Yannick, G., Lebbou, K., Fukuda, T., and Boulon, G., Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1 – xYbxF2 + x , J. Phys.: Condens. Matter, 2004, vol. 16, no. 8, pp. 1501–1521.

    CAS  Google Scholar 

  25. Shcheulin, A.S., Angervaks, A.E., Semenova, T.S., Koryakina, L.F., Petrova, M.A., Fedorov, P.P., Reiterov, V.M., Garibin, E.A., and Ryskin, A.I., Additive colouring of CaF2:Yb crystals: determination of Yb2+ concentration in CaF2:Yb crystals and ceramics, Appl. Phys. B, 2013, vol. 111, pp. 551–557.

    Article  CAS  Google Scholar 

  26. Sulc, J., Jelınkova, H., Doroshenko, M.E., Basiev, T.T., Konyushkin, V.A., and Fedorov, P.P., Tunability of lasers based on Yb3+ doped fluorides SrF2, SrF2–CaF2, SrF2–BaF2 and YLF, 2009 OSA/ASSP 2009.

  27. Camy, J.L., Doualan, A., Benayad, M., Von Edlinger, V., Enard M., and Moncorg, R., Comparative spectroscopic and laser properties of Yb3+-doped CaF2, SrF2 and BaF2 single crystals, Appl. Phys., 2007, vol. 89, pp. 539–542.

    Article  CAS  Google Scholar 

  28. Druon, F., Ricaud, S., Papadopoulos, D.N., Pellegrina, A., Camy, P., Doualan, J.L., Moncorge, R., Courjaud, A., Mottay, E., and Georges, P., On Yb:CaF2 and Yb:SrF2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance, Opt. Mater. Express, 2011, vol. 1, no. 3, pp. 489–502.

    Article  Google Scholar 

  29. Moine, B., Courtois, B., and Pedrini, C., Luminescence and photoionization processes of Yb2+ in CaF2, SrF2 and BaF2, J. Phys., 1989, vol. 50, no. 15, pp. 105–2119.

    Article  Google Scholar 

  30. Kaplyanskii, A.A. and Feofilov, P.P., Spectra of divalent rare-earth ions in alkaline earth fluoride crystals, Opt. Spektrosk., 1962, vol. 13, no. 2, pp. 235–241.

    Google Scholar 

  31. Rustamov, E., Radiation-induced optical properties of M1 – xRxF2 + x nonstoichiometric phases, Cand. Sci. (Chem.) Dissertation, Tashkent, 1983.

  32. Murin, I.V. and Gunsser, W., Relaxation methods for the study of ion transport in halide systems, Solid State Ionics, 1992, vols. 53–56, pp. 837–842.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to P.P. Fedorov for kindly providing the single-crystal and ceramic samples.

Funding

This work was supported by the Institute of Nuclear Physics, Academy of Sciences of Uzbekistan (basic research theme no. PP-4526).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Boiboboeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashurov, M.K., Nuritdinov, I., Boiboboeva, S.T. et al. Optical Properties of Single Crystals and Nanoceramics of CaF2–SrF2–YbF3 Solid Solutions. Inorg Mater 58, 886–892 (2022). https://doi.org/10.1134/S0020168522080015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522080015

Keywords:

Navigation