Skip to main content
Log in

Synthesis of Nanoparticulate Cobalt Ferrite and Its Catalytic Properties for Fenton-Like Processes

  • Published:
Inorganic Materials Aims and scope

Abstract

Nanoparticulate CoFe2O4 has been synthesized by the citrate combustion method. The nanopowder has been characterized from the viewpoint of its chemical homogeneity, particle size, dispersion, and morphological features. The results demonstrate that the CoFe2O4 nanopowder (with an average particle size on the order of 74 nm) is an effective catalyst for the oxidation of the organic pollutants methylene orange (degree of destruction of 76.6%) and 2,4-dinitrophenol (degree of destruction of 95.4%) in Fenton-like processes without additional heating or ultraviolet illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Manova, E., Tsoncheva, T., Paneva, D., Mitov, I., Tenchev, K., and Petrov, L., Mechanochemically synthesized nano-dimensional iron–cobalt spinel oxides as catalysts for methanol decomposition, Appl. Catal., A, 2004, vol. 277, no. 1, pp. 119–127. https://doi.org/10.1016/j.apcata.2004.09.002

  2. Kefeni, K.K., Msagati, A.M., and Mamba, B.B., Ferrite nanoparticles: synthesis, characterisation and applications in electronic device, Mater. Sci. Eng., B, 2017, vol. 215, pp. 37–55. https://doi.org/10.1016/j.mseb.2016.11.002

    Article  CAS  Google Scholar 

  3. Petrova, E., Kotsikau, D., Pankov, V., and Fahmi, A., Influence of synthesis methods on structural and magnetic characteristics of Mg–Zn-ferrite nanopowders, J. Magn. Magn. Mater., 2019, vol. 473, pp. 85–91. https://doi.org/10.1016/j.jmmm.2018.09.128

    Article  CAS  Google Scholar 

  4. Somnath, S., Indu, S., Kotnala, R.K., Singh, M., Kumar, A., Dhiman, P., Singh, V.P., Verma, K., and Kumar, G., Structural magnetic and Mössbauer studies of Nd-doped Mg–Mn ferrite nanoparticles, J. Magn. Magn. Mater., 2017, vol. 444, pp. 77–86. https://doi.org/10.1016/j.jmmm.2017.08.017

    Article  CAS  Google Scholar 

  5. Rao, K.S., Nayakulu, S.V.R., Varma, M.C., Choudary, G.S.V.R.K., and Rao, K.H., Controlled phase evolution and the occurrence of single domain CoFe2O4 nanoparticles synthesized by PVA assisted sol–gel method, J. Magn. Magn. Mater., 2018, vol. 451, no. 1, pp. 602–608. https://doi.org/10.1016/j.jmmm.2017.11.069

    Article  CAS  Google Scholar 

  6. Mittova, I.Ya., Perov, N.S., Tomina, E.V., Pan’kov, V.V., and Sladkopevtsev, B.V., Multiferroic nanocrystals and diluted magnetic semiconductors as a base for designing magnetic materials, Inorg. Mater., 2021, vol. 57, no. 13, pp. 22–48. https://doi.org/10.1134/S0020168521130033

    Article  Google Scholar 

  7. Rehman, F., Sayed, M., Khan, J.A., Shah, L.A., Shah, N.S., Khan, H.M., and Khattak, R., Degradation of crystal violet dye by Fenton and photo-Fenton oxidation processes, Z. Phys. Chem., 2018, vol. 232, no. 12, pp. 1771–1786. https://doi.org/10.1515/zpch-2017-1099

    Article  CAS  Google Scholar 

  8. Artemyanov, A.P., Zemskova, L.A., and Ivanov, V.V., Catalytic liquid-phase oxidation of phenol in water media using carbon fiber/(iron, iron oxide) catalyst, Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2017, vol. 60, no. 8, pp. 88–95.

    Article  CAS  Google Scholar 

  9. Rafferty, A., Prescott, T., and Brabazon, D., Sintering behaviour of cobalt ferrite ceramic, Ceram. Int., 2008, vol. 34, no. 1, pp. 15–21. https://doi.org/10.1016/j.ceramint.2006.07.012

    Article  CAS  Google Scholar 

  10. Nabiyouni, G., Julaee, M., Ghanbari, D., Aliabadi, P.C., and Safaie, N., room temperature synthesis and magnetic property studies of Fe3O4 nanoparticles prepared by a simple precipitation method, J. Ind. Eng. Chem., 2015, vol. 21, pp. 599–603. https://doi.org/10.1016/j.jiec.2014.03.025

    Article  CAS  Google Scholar 

  11. Ding, Z., Wang, W., Zhang, Y., Li, F., and Liu, J.P., Synthesis, characterization and adsorption capability for Congo red of CoFe2O4 ferrite nanoparticles, J. Alloys Compd., 2015, vol. 640, pp. 362–370. https://doi.org/10.1016/j.jallcom.2015.04.020

    Article  CAS  Google Scholar 

  12. Larumbe, S., Perez-Landazabal, J.I., Pastor, J.M., and Gomez-Polo, C., Effect of a SiO2 coating on the magnetic properties of Fe3O4 nanoparticles, J. Appl. Phys., 2012, vol. 111, pp. 103911–103918. https://doi.org/10.1088/0953-8984/24/26/266007

    Article  CAS  Google Scholar 

  13. Zakiyah, L.B., Saion, E., Al-Hada, N.M., Gharibshahi, E., Salem, A., Soltani, N., and Gene, S., Up-scalable synthesis of size-controlled copper ferrite nanocrystals by thermal treatment method, Mater. Sci. Semicond. Process., 2015, vol. 40, pp. 564–569. https://doi.org/10.1016/j.mssp.2015.07.027

    Article  CAS  Google Scholar 

  14. Tian, Y., Yu, B., Li, X., Li, K., and Facile, J., Solvothermal synthesis of monodisperse Fe3O4 nanocrystals with precise size control of one nanometre as potential MRI contrast agents, Mater. Chem., 2011, vol. 21, pp. 2476–2481. https://doi.org/10.1039/C0JM02913K

    Article  CAS  Google Scholar 

  15. Tomina, E.V., Perov, N.S., Mittova, I.Ya., Alekhina, Yu.A., Stekleneva, O.V., and Kurkin, N.A., Microwave synthesis and magnetic properties of bismuth ferrite nanopowder doped with cobalt, Russ. Chem. Bull., 2020, vol. 60, pp. 941–946. https://doi.org/10.1007/s11172-020-2852-1

    Article  CAS  Google Scholar 

  16. Zhang, Z., Yao, G., Zhang, X., Ma, J., and Lin, H., Synthesis and characterization of nickel ferrite nanoparticles via planetary ball milling assisted solid-state reaction, Ceram Int., 015, vol. 41, pp. 4523–4530. https://doi.org/10.1016/j.ceramint.2014.11.147

  17. Rashad, M.M., Soltan, S., Ramadan, A.A., Bekheet, M.F., and Rayan, D.A., Investigation of the structural, optical and magnetic properties of CuO/CoFe2O4 nanocomposites synthesized via simple microemulsion method, Ceram. Int., 2015, vol. 41, pp. 12237–12245. https://doi.org/10.1016/j.ceramint.2015.06.046

    Article  CAS  Google Scholar 

  18. Shashank, D.B., Rakesh, K.S., Vivek, K., Nishant, K., and Shambhu, K., Tailoring the structural, optical and multiferroic properties of low temperature synthesized cobalt ferrite nanomaterials, by citrate precursor method, Mater. Today: Proc., 2021, vol. 46, no. 15, pp. 6527–6533. https://doi.org/10.1016/j.matpr.2021.04.001

    Article  CAS  Google Scholar 

  19. Ali, T.M., Ismail, S.M., Mansour, S.F., Abdo, M.A., and Yehia, M., Physical properties of Al-doped cobalt nanoferrite prepared by citrate–nitrate auto combustion method, J. Mater. Sci.: Mater. Electron., 2021, vol. 32, pp. 3092–3103. https://doi.org/10.1007/s10854-020-05059-y

    Article  CAS  Google Scholar 

  20. Mariosi, F.R., Venturini, J., Alexandre, C.V., and Bergmann, C.P., Lanthanum-doped spinel cobalt ferrite (CoFe2O4) nanoparticles for environmental applications, Ceram. Int., 2019, vol. 46, no. 3, pp. 2772–2779. https://doi.org/10.1016/j.ceramint.2019.09.266

    Article  CAS  Google Scholar 

  21. Khodosova, N.A., Tomina, E.V., Bel’chinskaya, L.I., Zhabin, A.V., Kurkin, N.A., and Volkov, A.S., Physical and chemical characteristics of a nanocomposite sorbent, nontronite/CoFe2O4, Sorbtsionnye Khromatogr. Protsessy, 2021, vol. 21, no. 4, pp. 520–528. https://doi.org/10.17308/sorpchrom.2021.21/3636

    Article  CAS  Google Scholar 

  22. JCPDC PCPDFWIN: A Windows Retrieval/Display Program for Accessing the ICDD PDF-2 Data Base, International Centre for Diffraction Data, 1997.

  23. Brandon, D. and Kaplan, U., Microstructure of Materials. Research and Control Methods, West Sussex: Wiley, 1999, p. 384.

    Google Scholar 

  24. Roshanfekr, R.L., Farshi, G.B., Irani, M., Sadegh, S.M., and Haririan, I., Comparison study of phenol degradation using cobalt ferrite nanoparticles synthesized by hydrothermal and microwave methods, Desalination Water Treatment, 2014, vol. 56, no. 12, pp. 1–10. https://doi.org/10.1080/19443994.2014.97796

    Article  Google Scholar 

  25. Papynov, E.K., Nomerovskii, A.D., Azon, A.S., Glavinskaya, V.O., Buravlev, I.Yu., Ognev, A.V., Samardak, A.S., Dran’kov, A.N., Krasitskaya, S.G., and Tananaev, I.G., Macroporous magnetic iron oxides and their composites for liquid-phase catalytic oxidation, Russ. J. Inorg. Chem., 2020, vol. 65, no. 11, pp. 1449–1460 https://doi.org/10.1134/S0036023620110157

    Article  Google Scholar 

  26. Chomkitichai, W., Jansanthea, P., and Channei, D., Photocatalytic activity enhancement in methylene blue degradation by loading Ag nanoparticles onto α-Fe2O3, Russ. J. Inorg. Chem., 2021, vol. 66, pp. 1995–2003. https://doi.org/10.1134/S0036023621130027

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was carried out in part using equipment at the Shared Research Facilities Center, Voronezh State University (http://ckp.vsu.ru).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Tomina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomina, E.V., Kurkin, N.A. & Doroshenko, A.V. Synthesis of Nanoparticulate Cobalt Ferrite and Its Catalytic Properties for Fenton-Like Processes. Inorg Mater 58, 701–705 (2022). https://doi.org/10.1134/S0020168522070135

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522070135

Keywords:

Navigation