Skip to main content
Log in

Synthesis, Crystal Structure, and High-Temperature Heat Capacity of Pb10 – xSmx(GeO4)2 + x(VO4)4 – x (x = 0.2, 0.5, 0.7, 1.0) Apatites from 350 to 1000 K

  • Published:
Inorganic Materials Aims and scope

Abstract

Pb10 – xSmx(GeO4)2 + x(VO4)4 – x (x = 0.2, 0.5, 0.7, 1.0) compounds with the apatite structure have been synthesized by firing appropriate mixtures of the PbO, Sm2O3, GeO2, and V2O5 oxides in air at temperatures from 773 to 1073 K. Their crystal structure has been studied using X-ray diffraction, and their high-temperature heat capacity (350–1000 K) has been determined by differential scanning calorimetry. The data have been used to evaluate their thermodynamic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kanazawa, T., Inorganic Phosphate Materials, Materials Science Monographs, vol. 52, Amsterdam: Elsevier, 1989.

  2. Yano, T., Nabeta, Y., and Watanabe, A., A new crystal Pb5(GeO4)(VO4)2 for acousto-optic device applications, Appl. Phys. Lett., 1971, vol. 18, no. 12, pp. 570–571.

    Article  CAS  Google Scholar 

  3. Gospodinov, M. and Sveshtarov, P., Growth of large Pb5(GeO4)(VO4)2 crystals, Cryst. Res. Technol., 1990, vol. 25, no. 3, pp. K58–K61.

    Article  CAS  Google Scholar 

  4. Ignatov, A.V., Savinkova, G.M., Didorenko, E.G., et al., Isomorphous substitutions in the Pb(8 – x)GdxNa2(VO4)6O(x/2) system, Vestn. Donetsk. Nats. Univ., Ser. A: Estestv. Nauki, 2014, no. 1, pp. 152–156.

  5. Kovács, L., Péter, Á., Gospodinov, M., and Capelleti, R., Hydroxyl ions in acousto-optic Pb5(GeO4)(VO4)2 and Bi2(MoO4)3 single crystals, Phys. Status Solidi, 2005, vol. 2, no. 1, pp. 689–692. https://doi.org/10.1002/pssc.200460267

    Article  CAS  Google Scholar 

  6. Zhuravlev, V.D and Velikodny, Yu.A., Lead lanthanum and strontium lanthanum germanovanadates with apatite and oxyapatite structures, Russ. J. Inorg. Chem., 2009, vol. 54, no. 10, pp. 1551–1552. https://doi.org/10.1134/S0036023609100088

    Article  Google Scholar 

  7. Savankova, T.M., Akselrud, L.G., Ardanova, L.I., et al., Synthesis, crystal structure refinement and electrical conductivity of Pb(8 – x)Na2Smx(VO4)6O(x/2), J. Chem., 2014, pp. 1–7. https://doi.org/10.1155/2014/263548

  8. Chakroun-Ouadhour, E., Ternane, R., Ben Hassen-Chehimi, D., and Trabelsi-Ayadi, M., Synthesis, characterization and electrical properties of a lead sodium vanadate apatite, Mater. Res. Bull., 2008, vol. 43, pp. 2451–2456. https://doi.org/10.1016/j.materresbull.2007.07.030

    Article  CAS  Google Scholar 

  9. Pasero, M., Kampf, A.R., Ferraris, C., et al., Nomenclature of the apatite super group minerals, Eur. J. Mineral., 2010, vol. 22, pp. 163–179. https://doi.org/10.1127/0935-1221/2010/0022-2022

    Article  CAS  Google Scholar 

  10. Ptáćek, P., Opravil, T., Šoukal, F., et al., Formation of strontium–yttrium germanium anionic lacunar apatite (Sr2 + δY6.67 + (2δ/3)[GeO4]6O) as the intermediate phase of oxygen-rich yttrium–germanium apatite (Y9.333 + ε[GeO4]6O2 + 3/2ε), Ceram. Int., 2017, vol. 43, pp. 7827–7838. https://doi.org/10.1016/j.ceramint.2017.03.097

    Article  CAS  Google Scholar 

  11. Yablochkova, N.V., Synthesis of Pb8Pr2(GeO4)4(VO4)2 and refinement of its crystal structure, Russ. J. Inorg. Chem., 2013, vol. 58, no. 7, pp. 769–772. https://doi.org/10.1134/S0036023613070255

    Article  CAS  Google Scholar 

  12. Ivanov, S.A., Crystal structure refinement of Pb5(GeO4)(VO4)2 using X-ray powder diffraction peak profiles, Zh. Strukt. Khim., 1990, vol. 31, no. 4, pp. 80–84.

    CAS  Google Scholar 

  13. Ivanov, S.A. and Zavodnik, V.E., Crystal structure of Pb5GeV2O12, Kristallografiya, 1989, vol. 34, no. 4, pp. 824–828.

    CAS  Google Scholar 

  14. Denisova, L.T., Kargin, Yu.F., Golubeva, E.O., et al., Heat capacity of Pb10 – xPrx(GeO4)2 + x(VO4)4 – x (x = 0, 1, 2, 3) apatites in the range 350–1050 K, Inorg. Mater., 2020, vol. 56, no. 10. pp. 1027–1032. https://doi.org/10.1134/S0020168520100039

    Article  CAS  Google Scholar 

  15. Denisova, L.T., Golubeva, E.O., Belousova, N.V., et al., High-temperature heat capacity of Pb10 – xNdx-(GeO4)2 + x(VO4)4 – x (x = 0–3) apatites, Phys. Solid State, 2019, vol. 61, no. 7, pp. 1343–1346. https://doi.org/10.1134/S1063783419070060

    Article  CAS  Google Scholar 

  16. Denisova, L.T., Kargin, Yu.F., Golubeva, E.O., et al., Heat capacity of Pb10 – xLax(GeO4)2 + x(VO4)4 – x (x = 0, 1, 2, 3) apatites in the range 320–1000 K, Inorg. Mater., 2019, vol. 55, no. 2, pp. 162–166. https://doi.org/10.1134/S002016851902002X

    Article  CAS  Google Scholar 

  17. Bruker AXS TOPAS V4: General Profile and Structure Analysis Software for Powder Diffraction Data, Karlsruhe: Bruker, 2008.

  18. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., Beletskii, V.V., and Denisov, V.M., High-temperature heat capacity and thermodynamic properties of Tb2Sn2O7, Inorg. Mater., 2017, vol. 53, no. 1, pp. 93–95. https://doi.org/10.1134/S0020168517010046

    Article  CAS  Google Scholar 

  19. Savankova, T.M., Ignatov, A.V., Utochkin, D.M., and Get’man, E.I., Synthesis and characterization of Pb(8 – x)EuxNa2(VO4)6O(x/2) solid solutions, Nauk. Pratsi Khim. Tekhnol., 2014, no. 2, pp. 78–82.

  20. Koumiri, M.E., Oishi, S., Sato, S., et al., The crystal structure of lacunar apatite NaPb4(PO4)3, Mater. Res. Bull., 2000, vol. 35, pp. 503–513.

    Article  Google Scholar 

  21. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767.

    Article  Google Scholar 

  22. Chudnenko, K.V., Termodinamicheskoe modelirovanie v geokhimii: teoriya, algoritmy, programmnoe obespechenie, prilozheniya (Thermodynamic Modeling in Geochemistry: Theory, Algorithms, Software, and Applications), Novosibirsk: Geo, 2010.

  23. Maier, C.G. and Kelley, K.K., An equation for the representation of high temperature heat content data, J. Am. Chem. Soc., 1932, vol. 54, no. 8, pp. 3243–3246. https://doi.org/10.1021/ja01347a029

    Article  CAS  Google Scholar 

  24. Denisova, L.T., Molokeev, M.S., Aleksandrovskii, A.S., et al., Crystal structure, luminescence, and thermodynamic properties of Pb10 – xEux(GeO4)2 + x(VO4)4 – x (x = 0.1, 0.2, 0.3) substituted apatites, Inorg. Mater., 2021, vol. 57, no. 11, pp. 1158–1166. https://doi.org/10.1134/S0020168521110030

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the Krasnoyarsk Regional Shared Research Facilities Center, Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences.

Funding

This work was supported in part by the Russian Federation Ministry of Science and Higher Education as part of the state research target for the Siberian Federal University federal state autonomous educational institution of higher education, project no. FSRZ-2020-0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Denisova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisova, L.T., Molokeev, M.S., Kargin, Y.F. et al. Synthesis, Crystal Structure, and High-Temperature Heat Capacity of Pb10 – xSmx(GeO4)2 + x(VO4)4 – x (x = 0.2, 0.5, 0.7, 1.0) Apatites from 350 to 1000 K. Inorg Mater 58, 831–837 (2022). https://doi.org/10.1134/S0020168522070081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522070081

Keywords:

Navigation