Skip to main content
Log in

Adsorptive and Photocatalytic Properties of Molybdenum-Modified Titanium Dioxide

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have synthesized photocatalytically active molybdenum-modified titanium dioxide-based materials and studied key features of the formation of the synthesized materials and their physicochemical, adsorptive, and photocatalytic properties. The synthesized composites have high adsorption capacity and photocatalytic activity (PCA), which considerably exceeds the PCA of unmodified TiO2 of the same origin and that of Degussa P-25 commercially available titanium dioxide. The materials in which molybdenum is incorporated into the crystal lattice of anatase offer the highest PCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Renz, C., Lichtreaktionen der Oxyde des Titans, Cers und der Erdsauren, Helv. Chim. Acta, 1921, vol. 4, pp. 961–968. https://doi.org/10.1002/hlca.192100401101

    Article  CAS  Google Scholar 

  2. Keidel, E., The fading of aniline dyes in the presence of titanium white, Farben-Ztg., 1929, vol. 34, pp. 1242–1243.

    CAS  Google Scholar 

  3. Fujishima, A. and Honda, K., Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, vol. 238, no. 5358, pp. 37–38. https://doi.org/10.1038/238037a0

    Article  CAS  PubMed  Google Scholar 

  4. Dong, H., Zeng, G., Tang, L., Fan, C., Zhang, C., and He, X., An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures, Water. Res., 2015, vol. 79, pp. 128–146. https://doi.org/10.1016/j.watres.2015.04.038

    Article  CAS  PubMed  Google Scholar 

  5. Jiang, L., Wang, Y., and Feng, C., Application of photocatalytic technology in environmental safety, Procedia Eng., 2012, vol. 45, pp. 993–997. https://doi.org/10.1016/j.proeng.2012.08.271

    Article  CAS  Google Scholar 

  6. Tasbihi, M., Călin, I., Šuligoj, A., Fanetti, M., and Lavrenčič Štangar, U., Photocatalytic degradation of gaseous toluene by using TiO2 nanoparticles immobilized on fiberglass cloth, J. Photochem. Photobiol., A., 2017, vol. 336, pp. 89–97. https://doi.org/10.1016/j.jphotochem.2016.12.025

    Article  CAS  Google Scholar 

  7. Bhattacharyya, A., Kawi, S., and Ray, M.B., Photocatalytic degradation of orange II by TiO2 catalysts supported on adsorbents, Catal. Today, 2004, vol. 98, no. 3, pp. 431–439. https://doi.org/10.1016/j.cattod.2004.08.010

    Article  CAS  Google Scholar 

  8. Jacoby, W.A., Maness, P.C., Wolfrum, E.J., Blake, D.M., and Fennell, J.A., Mineralization of bacterial cell mass on a photocatalytic surface in air, Environ. Sci. Technol., 1998, vol. 32, no. 17, pp. 2650–2653. https://doi.org/10.1021/es980036f

    Article  CAS  Google Scholar 

  9. Caballero, L., Whitehead, K.A., Allen, N.S., and Verran, J., Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light, J. Photochem. Photobiol., A, 2009, vol. 202, no. 2, pp. 92–98. https://doi.org/10.1016/j.jphotochem.2008.11.005

    Article  CAS  Google Scholar 

  10. Hsuan-Liang Liu and Yang, Th. C.-K., Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light, Process Biochem., 2003, vol. 39, no. 4, pp. 475–481. https://doi.org/10.1016/S0032-9592(03)00084-0

    Article  CAS  Google Scholar 

  11. Burton, P., Peterson, E., Boyle, T., et al., Synthesis of high surface area ZnO(0001) plates as novel oxide supports for heterogeneous catalysts, Catal. Lett., 2010, vol. 139, no. 1, pp. 26–32. https://doi.org/10.1007/s10562-010-0405-1

    Article  CAS  Google Scholar 

  12. Bignozzi, C.A., Caramori, S., Cristino, V., et al., Nanostructured photoelectrodes based on WO3: applications to photooxidation of aqueous electrolytes, Chem. Soc. Rev., 2013, vol. 42, no. 6, pp. 2228–2246. https://doi.org/10.1039/c2cs35373c

    Article  CAS  PubMed  Google Scholar 

  13. Tian, L., Ye, L., Liu, J., et al., Solvothermal synthesis of CNTs–WO3 hybrid nanostructures with high photocatalytic activity under visible light, Catal. Commun., 2012, vol. 17, pp. 99–103. https://doi.org/10.1016/j.catcom.2011.10.023

    Article  CAS  Google Scholar 

  14. Franking, R., Li, L., Lukowski, M.A., et al., Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation, Energy Environ Sci., 2013, vol. 6, no. 2, pp. 500–512. https://doi.org/10.1039/C2EE23837C

    Article  CAS  Google Scholar 

  15. Bang, J.U., Lee, S.J., Jang, J.S., et al., Geometric effect of single or double metal-tipped CdSe nanorods on photocatalytic H2 generation, J. Phys. Chem. Lett., 2012, vol. 3, no. 24, pp. 3781–3785. https://doi.org/10.1021/jz301732n

    Article  CAS  PubMed  Google Scholar 

  16. Wang, J., Yin, S., Zhang, Q., et al., Mechanochemical synthesis of fluorine-doped SrTiO3 and its photo-oxidation properties, Chem. Lett., 2003, vol. 32, no. 6, pp. 540–541. https://doi.org/10.1246/cl.2003.540

    Article  CAS  Google Scholar 

  17. Bhatkhande, D.S., Pangarkar, V.G., and Beenackers, A.A.C.M., Photocatalytic degradation for environmental applications—a review, J. Chem. Technol. Biotechnol., 2002, vol. 77, no. 1, pp. 102–116. https://doi.org/10.1002/jctb.532

    Article  CAS  Google Scholar 

  18. Yu, J.C., Wingkei Ho, Jiaguo Yu, Hoyin Yip, Po Keung Wong, and Jincai Zhao, Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania, Environ. Sci. Technol., 2005, vol. 39, no. 4, pp. 1175–1179. https://doi.org/10.1021/es035374h

    Article  CAS  PubMed  Google Scholar 

  19. Wanjun Wang, Guocheng Huang, Yu, J.C., and Po Keung Wong, Advances in photocatalytic disinfection of bacteria: development of photocatalysts and mechanisms, J. Environ. Sci., 2015, vol. 34, pp. 232–247. https://doi.org/10.1016/j.jes.2015.05.003

    Article  CAS  Google Scholar 

  20. Karvinen, S.M., The effects of trace element doping on the optical properties and photocatalytic activity of nanostructured titanium dioxide, Ind. Eng. Chem. Res., 2003, vol. 42, no. 5, pp. 1035–1043. https://doi.org/10.1021/ie020358z

    Article  CAS  Google Scholar 

  21. Szczepanik, B., Photocatalytic degradation of organic contaminants over clay–TiO2 nanocomposites: a review, Appl. Clay Sci., 2017, vol. 141, pp. 227–239. https://doi.org/10.1016/j.clay.2017.02.029

    Article  CAS  Google Scholar 

  22. Khan, H. and Berk, D., Synthesis, physicochemical properties and visible light photocatalytic studies of molybdenum, iron and vanadium doped titanium dioxide, React. Kinet., Mech. Catal., 2014, vol. 111, no. 1, pp. 393–414. https://doi.org/10.1007/s11144-013-0637-3

    Article  CAS  Google Scholar 

  23. Sedneva, T.A., Lokshin, E.P., Kalinnikov, V.T., and Belikov, M.L., Photocatalytic activity of tungsten-modified titanium dioxide, Dokl. Phys. Chem., 2012, vol. 443, part 1, pp. 57–59. https://doi.org/10.1134/S0012501612030037

    Article  CAS  Google Scholar 

  24. Sedneva, T.A., Lokshin, E.P., Belikov, M.L., and Beljaevskij, A.T., Structure and morphology of iron-modified titania powders, Inorg. Mater., 2011, vol. 47, no. 11, pp. 1205–1213. https://doi.org/10.1134/S0020168511100177

    Article  CAS  Google Scholar 

  25. Sedneva, T.A., Lokshin, E.P., Belikov, M.L., and Belyaevskii, A.T., Synthesis and characterization of photocatalytic titanium(IV) oxide/cobalt(II) oxide nanocomposites, Khim. Tekhnol., 2015, vol. 16, no. 7, pp. 398–407.

    Google Scholar 

  26. Devi, L.G. and Murthy, B.N., Characterization of Mo doped TiO2 and its enhanced photo catalytic activity under visible light, Catal. Lett., 2008, vol. 125, no. 3, pp. 320–330. https://doi.org/10.1007/s10562-008-9568-4

    Article  CAS  Google Scholar 

  27. Li, C.X., Zhang, D., Jiang, Z.H., Yao, Z.P., and Jia, F.Z., Mo-doped titania films: preparation, characterization and application for splitting water, New J. Chem., 2011, vol. 35, no. 2, pp. 423–429. https://doi.org/10.1039/C0NJ00409J

    Article  Google Scholar 

  28. Li, M., Zhang, J., and Zhang, Y., Electronic structure and photocatalytic activity of N/Mo doped anatase TiO2, Catal. Commun., 2012, vol. 29, pp. 175–179. https://doi.org/10.1016/j.catcom.2012.10.014

    Article  CAS  Google Scholar 

  29. Devi, L.G., Murthy, B.N., and Kumar, S.G., Photocatalytic activity of V5+, Mo6+ and Th4+ doped polycrystalline TiO2 for the degradation of chlorpyrifos under UV/solar light, J. Mol. Catal., A, 2009, vol. 308, nos. 1–2, pp. 174–181. https://doi.org/10.1016/j.molcata.2009.04.007

  30. Shahmoradi, B., Ibrahim, I.A., Sakamoto, N., Ananda, S., Guru Row, T.N., Soga Kohei, Byrappa, K., Parsons, S., and Shimizu Yoshihisa, In situ surface modification of molybdenum-doped organic–inorganic hybrid TiO2 nanoparticles under hydrothermal conditions and treatment of pharmaceutical effluent, Environ. Technol., 2010, vol. 31, no. 11, pp. 1213–1220. https://doi.org/10.1080/09593331003592261

    Article  CAS  PubMed  Google Scholar 

  31. Huang, J., Guo, X., Wang, B., Li, L., Zhao, M., Dong, L., Liu, X., and Huang, Y., Synthesis and photocatalytic activity of Mo-doped TiO2 nanoparticles, J. Spectrosc., 2015, vol. 2015, pp. 1–8. https://doi.org/10.1155/2015/681850

    Article  CAS  Google Scholar 

  32. Wang, Z.C., Hu, X.F., and Helmersson, U.P., Peroxo sol–gel preparation: photochromic/electrochromic properties of Mo–Ti oxide gels and thin films, J. Mater. Chem., 2000, vol. 10, no. 10, pp. 2396–2400. https://doi.org/10.1039/b004933f

    Article  CAS  Google Scholar 

  33. Miyauchi, M., Nakajima, A., Watanabe, T., and Hashimoto, K., Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films, Chem. Mater., 2002, vol. 14, no. 6, pp. 2812–2816. https://doi.org/10.1021/cm020076p

    Article  CAS  Google Scholar 

  34. Sedneva, T.A., Lokshin, E.P., Belikov, M.L., and Kalinnikov, V.T., RF Patent 2435733, Byull. Izobret., 2011, no. 34.

  35. Sedneva, T.A., Lokshin, E.P., and Belikov, M.L., Ferroin adsorption on TiO2-based photocatalytic materials, Inorg. Mater., 2012, vol. 48, no. 5, pp. 480–487. https://doi.org/10.1134/S0020168512050160

    Article  CAS  Google Scholar 

  36. Matthews, R.W. and McEvoy, S.R., Destruction of phenol in water with sun, sand, and photocatalysis, Sol. Energy, 1992, vol. 49, no. 6, pp. 507–513. https://doi.org/10.1016/0038-092X(92)90159-8

    Article  CAS  Google Scholar 

  37. Belikov, M.L., Sedneva, T.A., and Lokshin, E.P., Adsorptive and photocatalytic properties of tungsten-modified titanium dioxide, Inorg. Mater., 2021, vol. 57, no. 2, pp. 146–153. https://doi.org/10.1134/S0020168521020023

    Article  CAS  Google Scholar 

  38. Khan, M., Xu, J., Chen, N., and Cao, W., First principle calculations of the electronic and optical properties of pure and (Mo, N) co-doped anatase TiO2, J. Alloys Compd., 2012, vol. 513, pp. 539–545. https://doi.org/10.1016/j.jallcom.2011.11.002

    Article  CAS  Google Scholar 

  39. Ichimura, Sh., Ebisu, H., Nonami, T., and Kato, K., Photocatalytic activity of titanium dioxide coated with apatite, Jpn. J. Appl. Phys., 2005, vol. 44, no. 7, pp. 5164–5170. https://doi.org/10.1143/JJAP.44.5164

    Article  CAS  Google Scholar 

  40. Yang Shi-ying, Chen You-yuan, Zheng Jian-guo, and Cui Ying-jie, Enhanced photocatalytic activity of TiO2 by surface fluorination in degradation of organic cationic compound, J. Environ. Sci., 2007, vol. 19, no. 1, pp. 86–89. https://doi.org/10.1016/S1001-0742(07)60014-X

    Article  CAS  Google Scholar 

  41. Khalyavka, T.A., Kapinus, E.I., Viktorova, T.I., and Tsyba, N.N., Adsorption and photocatalytic properties of nanodimensional titanium–zinc oxide composites, Theor. Exp. Chem., 2009, vol. 45, no. 4, pp. 234–238. https://doi.org/10.1007/s11237-009-9087-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Belikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belikov, M.L., Safaryan, S.A. Adsorptive and Photocatalytic Properties of Molybdenum-Modified Titanium Dioxide. Inorg Mater 58, 715–722 (2022). https://doi.org/10.1134/S0020168522070032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522070032

Keywords:

Navigation