Skip to main content
Log in

Mo2C Synthesis via Temperature-Programmed Carburization with the Use of Molybdenum Blue Xerogels

  • Published:
Inorganic Materials Aims and scope

Abstract—

Mo2C has been successfully synthesized for the first time via temperature-programmed carburization using molybdenum blue nanoparticles as a precursor. Conditions for molybdenum carbide formation have been identified and activation conditions have been shown to influence characteristics of the resultant carbides: their phase composition, morphology, and specific surface area. It has been shown that the formation of both β-Mo2C and α-Mo2C is possible, depending on activation conditions (with or without preliminary heat treatment in air).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Toth, L.E., Transition Metal Carbides and Nitrides, New York: Academic, 1971, p. 279.

    Google Scholar 

  2. Tominaga, H. and Nagai, M., Theoretical study of methane reforming on molybdenum carbide, Appl. Catal., A, 2007, vol. 328, pp. 35–42.

  3. Christofoletti, T., Assaf, J., and Assaf, E., Methane steam reforming on supported and nonsupported molybdenum carbides, Chem. Eng. J., 2005, vol. 106, pp. 97–103.

    Article  CAS  Google Scholar 

  4. La Mont, D.C. and Thomson, W.J., Dry reforming kinetics over a bulk molybdenum carbide catalyst, Chem. Eng. Sci., 2005, vol. 60, pp. 3553–3559.

    Article  CAS  Google Scholar 

  5. Marin Flores, O.G. and Ha, S., Study of the performance of Mo2C for iso-octane steam reforming, Catal. Today, 2008, vol. 136, nos. 3–4, pp. 235–242.

    Article  CAS  Google Scholar 

  6. York, A.P.E., Clarige, J.B., Marquez-Alvarez, C., Brungs, A.J., Tsang, S.C., and Green, M.L.H., Synthesis of early transition metal carbides and their application for the reforming of methane to synthesis gas, Stud. Surf. Sci. Catal., 1997, vol. 110, pp. 711–720.

    Article  CAS  Google Scholar 

  7. Clarige, J.B., York, A.P.E., Brungs, A.J., Marquez-Alvares, C., Sloan, J., Tsang, S.C., and Green, M.L.H., New catalysts for conversion of methane to synthesis gas: molybdenum and tungsten carbide, J. Catal., 1998, vol. 180, no. 1, pp. 85–100.

    Article  Google Scholar 

  8. Solymosi, F., Németh, R., and Oszkó, A., The oxidative dehydrogenation of propane with CO2 over supported Mo2C catalyst, Stud. Surf. Sci. Catal., 2001, vol. 136, pp. 339–344.

    Article  CAS  Google Scholar 

  9. Patt, J., Moon, D.J., Phillips, C., and Thompson, L., Molybdenum carbide catalysts for water–gas shift, Catal. Lett., 2000, vol. 65, pp. 193–195.

    Article  CAS  Google Scholar 

  10. Liu, P. and Rodriguez, J.A., Water–gas-shift reaction on molybdenum carbide surfaces: essential role of the oxycarbide, J. Phys. Chem. B, 2006, vol. 110, pp. 19418–19425.

    Article  CAS  Google Scholar 

  11. Tominaga, H. and Nagai, M., Density functional theory of water–gas shift reaction on molybdenum carbide, J. Phys. Chem. B, 2005, vol. 109, pp. 20415–20423.

    Article  CAS  Google Scholar 

  12. Moon, D.J. and Rue, J.W., Molybdenum carbide water–gas shift catalyst for fuel cell-powered vehicles application, Catal. Lett., 2004, vol. 92, no. 1, pp. 17–24.

    Article  CAS  Google Scholar 

  13. Rodriguez, J.A., Liu, P., Takahashi, Y., Nakamura, K., Viñes, F., and Illas, F., Desulfurization reactions on surfaces of metal carbides: photoemission and density-functional studies, Top. Catal., 2010, vol. 53, pp. 393–402.

    Article  CAS  Google Scholar 

  14. Széchenyi, A. and Solymosi, F., n-Octane aromatization on Mo2C-containing catalysts, Appl. Catal., A, 2006, vol. 306, no. 1, pp. 149–158.

  15. Han, J., Duan, J., Chen, P., Lou, H., Zheng, X., and Hong, H., Nanostructured molybdenum carbides supported on carbon nanotubes as efficient catalysts for one-step hydrodeoxygenation and isomerization of vegetable oils, Green Chem., 2011, vol. 13, pp. 2561–2568.

    Article  CAS  Google Scholar 

  16. Porosoff, M.D., Kattel, S., Li, W., Liu, P., and Chen, J.G., Identifying trends and descriptors for selective CO2 conversion to CO over transition metal carbides, Chem. Commun., 2015, vol. 51, pp. 6988–6991.

    Article  CAS  Google Scholar 

  17. Izhar, S., Yoshida, M., and Nagai, M., Characterization of cobalt–tungsten and molybdenum–tungsten carbides an anode catalyst for PEFC, Electrochem. Acta, 2009, vol. 54, pp. 1255–1262.

    Article  CAS  Google Scholar 

  18. Darujati, A.D.S. and Thompson, W.J., Kinetic study of a ceria-promoted Mo2C/γ-Al2O3 catalyst in dry-methane reforming, Chem. Eng. Sci., 2006, vol. 61, pp. 4309–4315.

    Article  CAS  Google Scholar 

  19. Vitale, G., Frauwallner, M., Hernandez, E., Scott, C., and Pereira-Almao, P., Low temperature synthesis of cubic molybdenum carbide catalysts via pressure induced crystallographic orientation of MoO3 precursor, Appl. Catal., A, 2011, vol. 400, pp. 221–229.

  20. Zhu, Q., Chen, Q., Yang, X., and Ke, D., A new method for the synthesis of molybdenum carbide, Mater. Lett., 2007, vol. 61, pp. 5173–5174.

    Article  CAS  Google Scholar 

  21. Skudin, V.V., Fabrication of composite membranes with a bulk and supported catalyst material layer, Membr. Membr. Tekhnol., 2012, vol. 2, no. 4, pp. 303–317.

    Google Scholar 

  22. Xiao, T.C., York, A.P., Williams, V.C., Al-Megren, H., Hanif, A., Zhou, X.Y., and Green, M.L.H., Preparation of molybdenum carbides using butane and their catalytic performance, Chem. Mater., 2000, vol. 12, pp. 3896–3905.

    Article  CAS  Google Scholar 

  23. Zhang, A., Zhu, A., Chen, B., Zhang, S., Au, C., and Shi, C., In-situ synthesis of nickel modified molybdenum carbide catalyst for dry reforming of methane, Catal. Commun., 2011, vol. 12, pp. 803–807.

    Article  CAS  Google Scholar 

  24. Zhang, S., Shi, C., Chen, B., Zhang, Y., Zhu, Y., Qiu, J., and Au, C., Catalytic role of β-Mo2C in DRM catalysts that contain Ni and Mo, Catal. Today, 2015, vol. 158, pp. 254–258.

    Google Scholar 

  25. Darujati, A.R.S., LaMont, D.C., and Thompson, W.J., Oxidation stability of Mo2C catalysts under fuel reforming conditions, Appl. Catal., A, 2003, vol. 253, pp. 397–407.

  26. Mehdad, A., Mixed metal carbides: understanding the synthesis, surface properties and catalytic activities, Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy, Univ. of Oklahoma, 2015, p. 180.

  27. Semin, G.L., Dubrovskii, A.R., Snytnikov, P.V., Kuznetsov, S.A., and Sobyanin, V.A., Use of molybdenum carbide- and tungsten carbide-based catalysts in carbon oxide steam reforming, Katal. Prom–sti., 2011, no. 5, pp. 44–53.

  28. Müller, A. and Roy, S., En route from the mystery of molybdenum blue via related manipulatable building blocks to aspects of materials science, Coord. Chem. Rev., 2003, vol. 245, pp. 153–166.

    Article  Google Scholar 

  29. Liu, T., Diemann, E., and Muller, A., Hydrophilic inorganic macro-ions in solution: unprecedented self-assembly emerging from historical “blue waters,” J. Chem. Educ., 2007, vol. 84, no. 3, pp. 526–532.

    Article  CAS  Google Scholar 

  30. Bazhenova, M.D., Gavrilova, N.N., and Nazarov, V.V., Some colloidochemical properties of molybdenum blues synthesized using glucose as a reducing agent, Colloid J., 2015, vol. 77, no. 1, pp. 1–5.

    Article  CAS  Google Scholar 

  31. Ostroushko, A.A. and Tonkushina, M.O., Destruction of molybdenum nanocluster polyoxometallates in aqueous solutions, Russ. J. Phys. Chem. A, 2015, vol. 89, no. 3, pp. 443-446.

    Article  CAS  Google Scholar 

  32. Lee, J.S., Oyama, S.T., and Boudart, M., Molybdenum carbide catalysts: I. Synthesis of unsupported powders, J. Catal., 1987, vol. 106, no. 1, pp. 125–133.

    Article  CAS  Google Scholar 

  33. Volpe, L. and Boudart, M., Compounds of molybdenum and tungsten with high specific surface area: II. Carbides, J. Solid State Chem., 1985, vol. 59, no. 3, pp. 348–356.

    Article  CAS  Google Scholar 

  34. Hanif, A., Xiao, T., York, A.P.E., Sloan, J., and Green, M.L.H., Study on the structure and formation mechanism of molybdenum carbides, Chem. Mater., 2002, vol. 14, pp. 1009–1015.

    Article  CAS  Google Scholar 

  35. Gavrilova, N., Myachina, M., Nazarov, V., and Skudin, V., Simple synthesis of molybdenum carbides from molybdenum blue nanoparticles, Nanomaterials, 2021, vol. 11, paper 873.

  36. Ma, Y., Guan, G., Hao, X., Cao, J., and Abudula, A., Molybdenum carbide as alternative catalyst for hydrogen production—a review, Renew. Sustain. Energy Rev., 2017, vol. 75, pp. 1101–1129.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Mendeleev University of Chemical Technology, project no. 032-2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Gavrilova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilova, N.N., Bazhenova, M.D., Myachina, M.A. et al. Mo2C Synthesis via Temperature-Programmed Carburization with the Use of Molybdenum Blue Xerogels. Inorg Mater 58, 501–508 (2022). https://doi.org/10.1134/S002016852205003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852205003X

Keywords:

Navigation