Skip to main content
Log in

Preparation and Structure of New Orthophosphates Isostructural with the Mineral Langbeinite: A2R1.5Ta0.5(PO4)3 (A = K, Rb; R = Ga, Gd, Dy, Ho, Er, Yb)

  • Published:
Inorganic Materials Aims and scope

Abstract—

New orthophosphates with the general formula A2R1.5Ta0.5(PO4)3 (where A = K or Rb and R = Ga, Gd, Dy, Ho, Er, or Yb) have been prepared by solid-state reactions and characterized by IR spectroscopy and X-ray diffraction. The results demonstrate that they crystallize in the structure of the mineral langbeinite (sp. gr. P213) and that their cubic cell parameter increases with increasing lanthanide ionic radius. The crystal structure of K2Dy1.5Ta0.5(PO4)3 has been refined using neutron powder diffraction data. The potassium and dysprosium cations in this phosphate have been shown to be distributed at random over framework sites. The synthesized compounds are of interest as crystalline single-phase mineral-like matrices for prolonged isolation of dangerous radionuclides from the biosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Benmoussa, A., Borel, M.M., Grandin, A., Leclaire, A., and Raveau, B., Langbeinite, a host lattice for “V3O” clusters: the trivalent vanadium phosphate K11V15P18O73, J. Solid State Chem., 1992, vol. 97, no. 2, pp. 314–318.https://doi.org/10.1016/0022-4596(92)90039-X

    Article  CAS  Google Scholar 

  2. Kasthuri Rangan, K. and Gopalakrishnan, J., New titanium–vanadium phosphates of Nasicon and langbeinite structures, and differences between the two structures toward deintercalation of alkali metal, J. Solid State Chem., 1994, vol. 109, no. 1, pp. 116–121.https://doi.org/10.1006/jssc.1994.1080

    Article  Google Scholar 

  3. Sizova, R.G., Blinov, V.A., Voronkov, A.A., Ilyukhin, V.V., and Belov, N.V., Refined structure of Na4Zr2(SiO4)3 and its place among mixed frameworks with the general formula M2(TO4)3, Kristallografiya, 1981, vol. 26, no. 2, pp. 293–300.

    CAS  Google Scholar 

  4. Carvajal, J.J., Aznar, A., Solé, R., Gavaldà, Jna., Massons, J., Solans, X., Aguiló, M., and Díaz, F., Growth and structural characterization of Rb2Ti1.01Er0.99(PO4)3, Chem. Mater., 2003, vol. 15, no. 1, pp. 204–211.https://doi.org/10.1021/cm020806t

    Article  CAS  Google Scholar 

  5. Jiao, M., Lv, W., Lü, W., Zhao, Q., Shao, B., and You, H., Optical properties and energy transfer of a novel KSrSc2(PO4)3:Ce3+/Eu2+/Tb3+ phosphor for white light emitting diodes, Dalton Trans., 2015, vol. 44, pp. 4080–4087.

    Article  CAS  Google Scholar 

  6. Lajmi, B., Hidouri, M., Wattiaux, A., Fournes, L., Darriet, J., and Ben Amara, M., Crystal structure, Mössbauer spectroscopy, and magnetic properties of a new potassium iron oxyphosphate K11Fe15(PO4)18O related to the langbeinite-like compounds, J. Alloys Compd., 2003, vol. 361, nos. 1–2, pp. 77–83.https://doi.org/10.1016/S0925-8388(03)00412-2

    Article  CAS  Google Scholar 

  7. Orlova, A.I., Trubach, I.G., Kurazhkovskaya, V.S., Pertierra, P., Salvadó, M.A., Garcia-Granda, S., Khainakov, S.A., and Garcıa, J.R., Synthesis, characterization, and structural study of K2FeZrP3O12 with the langbeinite structure, J. Solid State Chem., 2003, vol. 173, no. 2, pp. 314–318.https://doi.org/10.1016/S0022-4596(03)00101-4

    Article  CAS  Google Scholar 

  8. Trubach, I.G., Beskrovnyi, A.I., Orlova, A.I., Orlova, V.A., and Kurazhkovskaya, V.S., Synthesis and investigation of the new phosphates K2LnZr(PO4)3 (Ln = Ce–Yb, Y) with langbeinite structure, Crystallogr. Rep., 2004, vol. 49, no. 4, pp. 614–618.https://doi.org/10.1134/1.1780625

    Article  CAS  Google Scholar 

  9. Orlova, A.I., Orlova, V.A., Buchirin, A.V., and Beskrovnyi, A.I., Cesium and its rubidium and potassium analogs in rhombohedral [NaZr2(PO4)3 type] and cubic [langbeinite type] phosphates: 1. Crystal-chemical characterization, Radiokhimiya, 2005, vol. 47, no. 3, pp. 203–212.

    Google Scholar 

  10. Orlova, A.I. and Ojovan, M.I., Ceramic mineral waste-forms for nuclear waste immobilization, Materials, 2019, vol. 12, pp. 2638–2683.https://doi.org/10.3390/ma12162638

    Article  CAS  PubMed Central  Google Scholar 

  11. Orlova, A.I., Koryttseva, A.K., and Loginova, E.E., Phosphate family with the langbeinite structure: crystal-chemical aspect of radioactive waste immobilization, Radiokhimiya, 2011, vol. 53, no 1, pp. 48–57.

    Google Scholar 

  12. Orlova, A.I., Koryttseva, A.K., Bortsova, E.V., Nagornova, S.V., Kazantsev, G.N., Samoilov, S.G., Bankrashkov, A.V., and Kurazhkovskaya, V.S., Crystallochemical modelling, synthesis, and study of new tantalum and niobium phosphates with framework structure, Crystallogr. Rep., 2006, vol. 51, no. 3, pp. 357–365.https://doi.org/10.1134/S1063774506030011

    Article  CAS  Google Scholar 

  13. Zatovskii, I.V., Slobodyanik, N.S., Ushchapivskaya, T.N., Ogorodnik, I.V., and Babarik, A.A., Synthesis of complex phosphates with a langbeinite structure from melts, Russ. J. Appl. Chem., 2006, vol. 79, no. 1, pp. 10–15.

    Article  CAS  Google Scholar 

  14. Xue, Y.-L., Zhao, D., Zhang, S.-R., Li, Y.-N., and Fan, Y.-P., A new disordered langbeinite-type compound, K2Tb1.5Ta0.5P3O12, and Eu3+-doped multicolour light-emitting properties, Acta Crystallogr., 2019, vol. 75, pp. 213–220.

    CAS  Google Scholar 

  15. Zhang, S., Zhao, D., Dai, Sh., Lou, H., and Zhang, R., Energy transfer, superior thermal stability and multi-color emitting properties of langbeinite-type solid-solution phosphor K2Dy1.5 – xEuxTa0.5(PO4)3, J. Rare Earths, 2021, vol. 39, no. 8, pp. 921–929.https://doi.org/10.1016/j.jre.2020.07.003

    Article  CAS  Google Scholar 

  16. DIFFRAC.EVA, Release 2011, Version 2.0, Bruker AXS, 2011. www.bruker-axs.com.

  17. Balagurov, A.M., Beskrovnyi, A.I., Zhuravlev, V.V., Mironova, G.M., Bobrikov, I.A., Neov, D., and Sheverev, S.G., Neutron diffractometer for real-time studies of transient processes at the IBR-2 pulsed reactor, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech., 2016, vol. 10, no. 3, pp. 467–479.

    Article  CAS  Google Scholar 

  18. Zlokazov, V.B. and Chernyshev, V.V., MRIA – a program for a full profile analysis of powder multiphase neutron-diffraction time-of-flight (direct and Fourier) spectra, J. Appl. Crystallogr., 1992, vol. 25, no. 3, pp. 447–451.https://doi.org/10.1107/S0021889891013122

    Article  Google Scholar 

  19. Wulff, H., Guth, U., and Loescher, B., The crystal structure of K2REZr(PO4)3 (RE = Y, Gd) isotypic with langbeinite, Powder Diffr., 1992, vol. 7, pp. 103–106.

    Article  CAS  Google Scholar 

  20. Shannon, R.D., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr., 1976, vol. 32, no. 5, pp. 751–767.https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  21. Ni, Y., Hughes, J.M., and Mariano, A.N., Crystal chemistry of the monazite and xenotime structures, Am. Mineral., 1995, vol. 80, pp. 21–26.

    Article  CAS  Google Scholar 

  22. Sears, V.F., Neutron scattering lengths and cross sections, Neutron News, 1992, vol. 3, no. 3, pp. 26–27.https://doi.org/10.1080/10448639208218770

    Article  Google Scholar 

  23. Guo, G.-C., Zhuang, J.-N., Wang, Y.-G., Chen, J.-T., Zhuang, H.-H., Huang, J.-S., and Zhan, Q.-E., Dysprosium tantalum oxide, DyTa7O19, Acta Crystallogr., 1996, vol. 52, pp. 5–7.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.S. Kurazhkovskaya for measuring the IR spectra.

Funding

This work was supported by the Russian Science Foundation, project no. 21-13-00308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Koryttseva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koryttseva, A.K., Orlova, A.I., Nagornova, S.V. et al. Preparation and Structure of New Orthophosphates Isostructural with the Mineral Langbeinite: A2R1.5Ta0.5(PO4)3 (A = K, Rb; R = Ga, Gd, Dy, Ho, Er, Yb). Inorg Mater 58, 356–363 (2022). https://doi.org/10.1134/S0020168522040069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522040069

Keywords:

Navigation