Skip to main content
Log in

Determination of the Complex Refractive Index of Nanoparticulate Magnetite from Optical Anisotropy Data for Magnetic Colloids

  • Published:
Inorganic Materials Aims and scope

Abstract—

Spectral dependences of birefringence and dichroism in magnetic colloids of magnetite nanoparticles have been studied. The results demonstrate that previously reported spectra of the refractive index of bulk magnetite are poorly suited for quantitative and qualitative interpretation of optical effects in magnetic fluids. Data on magneto-optical effects in magnetic colloids have been used to determine spectra of the real and imaginary parts of the refractive index of nanoparticulate magnetite in the wavelength range 400–1050 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Rosensweig, R., Ferrohydrodynamics, Cambridge: Cambridge Univ. Press, 1985.

    Google Scholar 

  2. Zahn, M., Magnetic fluid and nanoparticle applications to nanotechnology, J. Nanopart. Res., 2001, vol. 3, pp. 73–78.

    Article  CAS  Google Scholar 

  3. Davies, H.W. and Llewellyn, J.P., Magneto-optic effects in ferrofluids, J. Phys. D: Appl. Phys., 1980, vol. 13, pp. 2327–2336.

    Article  CAS  Google Scholar 

  4. Llewellyn, J.P., Form birefringence in ferrofluids, J. Phys. D: Appl. Phys., 1983, vol. 16, pp. 95–104.

    Article  CAS  Google Scholar 

  5. Jennings, B.R., Xu, M., and Ridler, P.J., Ferrofluid structures: a magnetic dichroism study, Proc. R. Soc. A, 2000, vol. 456, pp. 891–907.

    Article  Google Scholar 

  6. Donatini, F., Neveu, S., and Monin, J., Measurements of longitudinal magneto-optic effects in ferrofluids: dynamical method, J. Magn. Magn. Mater., 1996, vol. 162, pp. 69–74.

    Article  CAS  Google Scholar 

  7. Mehta, R.V., Patel, Rajesh., and Upadhyay, R.V., Direct observation of magnetically induced attenuation and enhancement of coherent backscattering of light, Phys. Rev. B: Condens. Matter Mater. Phys., 2006, vol. 74, paper 195127.

  8. Horng, H.E., Yang, S.Y., Lee, S.L., Hong, C.Y., and Yang, H.C., Magnetochromatics of the magnetic fluid film under a dynamic magnetic field, Appl. Phys. Lett., 2001, vol. 79, pp. 350–352.

    Article  CAS  Google Scholar 

  9. Jianping Ge., Yongxing Hu., and Yadong Yin., Highly tunable superparamagnetic colloidal photonic crystals, Angew. Chem., Int. Ed., 2007, vol. 46, no. 39, pp. 7428–7432.

    Article  CAS  Google Scholar 

  10. Radha, S., Mohan, S., and Pai, C., Diffraction patterns in ferrofluids: effect of magnetic field and gravity, Phys. B: Condens. Matter, 2014, vol. 448, pp. 341–345.

    Article  CAS  Google Scholar 

  11. Philip, J. and Laskar, J.M., Optical properties and applications of ferrofluids – a review, J. Nanofluids, 2012, vol. 1, pp. 3–20.

    Article  CAS  Google Scholar 

  12. Horng, H.E., Chen, C.S., Fang, K.L., Yang, S.Y., Chieh, J.J., Hong, C.Y., and Yang, H.C., Tunable optical switch using magnetic fluids, Appl. Phys. Lett., 2004, vol. 85, pp. 5592–5594.

    Article  CAS  Google Scholar 

  13. Philip, J., Mahendran, V., and Felicia, L.J., A simple, in-expensive and ultrasensitive magnetic nanofluid based sensor for detection of cations, ethanol and ammonia, J. Nanofluids, 2013, vol. 2, pp. 112–119.

    Article  CAS  Google Scholar 

  14. Mahendran, V. and Philip, J., A methanol sensor based on stimulus-responsive magnetic nanoemulsions, Sens. Actuators., B, 2013, vol. 185, pp. 488–495.

    Article  CAS  Google Scholar 

  15. Du, T., Yuan, S., and Luo, W., Thermal lens coupled magneto-optical effect in a ferrofluid, Appl. Phys. Lett., 1994, vol. 65, pp. 1844–1846.

    Article  CAS  Google Scholar 

  16. Horng, H.E., Hong, C.Y., Lee, S.L., Ho, C.H., Yang, S.Y., and Yang, H.C., Magnetochromatics resulted from optical gratings of magnetic fluid films subjected to perpendicular magnetic fields, J. Appl. Phys., 2000, vol. 88, pp. 5904–5908.

    Article  CAS  Google Scholar 

  17. Pu, S., Chen, X., Chen, L., Liao, W., Chen, Y., and Xia, Y., Tunable magnetic fluid grating by applying a magnetic field, Appl. Phys. Lett., 2005, vol. 87, paper 021901.

  18. Das, P., Colombo, M., and Prosperi, D., Recent advances in magnetic fluid hyperthermia for cancer therapy, Colloids Surf., B, 2019, vol. 174, pp. 42–55.

    Article  CAS  Google Scholar 

  19. Macaroff, P.P., Simioni, A.R., Lacava, Z.G.M., Lima, E.C.D., Morais, P.C., and Tedesco, A.C., Studies of cell toxicity and binding of magnetic nanoparticles with blood stream macromolecules, J. Appl. Phys., 2006, vol. 99, paper 08S102.

  20. Yang, S.Y., Chen, Y.F., Horng, H.E., Hong, C.Y., Tse, W.S., and Yang, H.C., Magnetically-modulated refractive index of magnetic fluid films, Appl. Phys. Lett., 2002, vol. 81, pp. 4931–4933.

    Article  CAS  Google Scholar 

  21. Pu, S., Chen, X., Di, Z., and Xia, Y., Relaxation property of the magnetic-fluid-based fiber-optic evanescent field modulator, J. Appl. Phys., 2007, vol. 101, paper 053532.

  22. Xiaopeng Fang, Yimin Xuan, and Qiang Li, Measurement of the extinction coefficients of magnetic fluids, Nanoscale Res. Lett., 2011, vol. 6, pp. 237–241.

    Article  Google Scholar 

  23. Yerin, C.V., Lykhmanova, V.I., and Yerina, M.V., Spectral dependences of the complex refractive index of concentrated magnetic fluids, Magnetohydrodynamics, 2018, vol. 54, nos. 1–2, pp. 155–159.

    Google Scholar 

  24. Gubin, S.P., Koshkarev, Yu.A., Khomutov, G.B., and Yurkov, G.Yu., Magnetic nanoparticles: preparation methods, structure, and properties, Usp. Khim., 2005, vol. 74, no. 6, pp. 539–574.

    Article  Google Scholar 

  25. Tombacz, E., Turcu, R., Socoliuc, V., and Vekas, L., Magnetic iron oxide nanoparticles: recent trends in design and synthesis of magnetoresponsive nanosystems, Biochem. Biophys. Res. Commun., 2015, vol. 468, no. 3, pp. 442–453.

    Article  CAS  Google Scholar 

  26. Nguyen Vo, Thu An, Gauthier, M., and Sandre, O., Templated synthesis of magnetic nanoparticles through the self-assembly of polymers and surfactants, Nanomaterials, 2014, vol. 4, pp. 628–685.

    Article  Google Scholar 

  27. Querry, M.R., Optical constants, Contractor Report, Aberdeen: US Army Chemical Research, Development, and Engineering Center, 1985.

    Google Scholar 

  28. Schlegel, A., Alvarado, S.F., and Wachter, P., Optical properties of magnetite (Fe3O4), J. Phys. C: Solid State Phys., 1979, vol. 12, pp. 1157–1164.

    Article  CAS  Google Scholar 

  29. Buchenau, U. and Muller, I., Optical properties of magnetite, Solid State Commun., 1972, vol. 11, pp. 1291–1293.

    Article  CAS  Google Scholar 

  30. Zhang, X.L., Wu, G.J., Zhang, C.L., Xu, T.L., and Zhou, Q.Q., What’s the real role of iron-oxides in the optical properties of dust aerosols?, Atmosph. Chem. Phys., 2015, vol. 15, pp. 12159–12177.

    Article  CAS  Google Scholar 

  31. Dyakov, S.A., Fradkin, I.M., Gippius, N.A., Klompmaker, L., et al., Wide-band enhancement of the transverse magneto-optical Kerr effect in magnetite-based plasmonic crystals, Phys. Rev. B: Condens. Matter Mater. Phys., 2019, vol. 100, paper 214411.

  32. Levitin, E.Ya., Kokodiy, N.G., Timanjuk, V.A., Vedernikova, I.A., and Chan, T.M., Measurements of the size and refractive index of Fe3O4 nanoparticles, Inorg. Mater., 2014, vol. 50, no. 8, pp. 881–884.

    Article  Google Scholar 

  33. Golovan’, L.A., Timoshenko, V.Yu., and Kashkarov, P.K., Optical properties of nanocomposites based on porous systems, Usp. Fiz. Nauk, 2007, vol. 177, no. 6, pp. 619–638.

    Article  Google Scholar 

  34. Van de Hulst, H.C., Light Scattering by Small Particles, New York: Wiley, 1957.

    Book  Google Scholar 

  35. Stoilov, S., Shilov, V.N., Dukhin, S.S., et al., Elektrooptika kolloidov (Electro-Optics of Colloids), Dukhin, S.S., Ed., Kyiv: Naukova Dumka, 1977.

    Google Scholar 

  36. Torres-Diaz, I. and Rinaldi, C., Recent progress in ferrofluids research: novel applications of magnetically controllable and tunable fluids, Soft Matter, 2014, vol. 10, pp. 8584–8605.

    Article  CAS  Google Scholar 

  37. Hasmonay, E., Dubois, E., Bacri, J.-C., Perzynski, R., Raikher, Yu.L., and Stepanov, V.I., Static magneto-optical birefringence of size-sorted nanoparticles, EPJ B, 1998, vol. 5, pp. 859–867.

    Article  CAS  Google Scholar 

  38. Gorshkov, M.M., Ellipsometriya (Ellipsometry), Moscow: Sovetskoe Radio, 1974.

    Google Scholar 

  39. Handbook of Ellipsometry, Tompkins, H.G. and Irene, E.A., Eds., N.Y.: Springer, 2005.

    Google Scholar 

  40. Guérin, C.-A., Mallet, P., and Sentenac, A., Effective-medium theory for finite-size aggregates, J. Opt. Soc. Am. A, 2006, vol. 23, pp. 349–358.

    Article  Google Scholar 

  41. Yerin, C.V. and Vivchar, V.I., Ellipsometry of magnetic fluid in a magnetic field, J. Magn. Magn. Mater., 2020, vol. 498, paper 166144.

  42. Dehghanpour, H.R., The effects of surfactant changing on physical properties of Fe3O4 nanoparticles produced in coprecipitation method, Russ. J. Inorg. Chem., 2020, vol. 65, pp. 1282–1286.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was carried out using equipment at the Shared Research Facilities Center, North-Caucasus Federal University, and was supported by the Russian Federation Ministry of Science and Higher Education (unique project identifier RF-2296.61321X0029, agreement no. 075-15-2021-687).

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target, project no. 0795-2020-007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Yerin.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yerin, K.V. Determination of the Complex Refractive Index of Nanoparticulate Magnetite from Optical Anisotropy Data for Magnetic Colloids. Inorg Mater 58, 403–413 (2022). https://doi.org/10.1134/S0020168522040045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522040045

Keywords:

Navigation