Skip to main content
Log in

High-Temperature Heat Capacity and Thermodynamic Properties of the CaY2Ge3O10 and CaY2Ge4O12 Germanates

  • Published:
Inorganic Materials Aims and scope

Abstract—

The CaY2Ge3O10 and CaY2Ge4O12 germanates have been synthesized by a standard ceramic processing route using CaCO3, Y2O3, and GeO2 as starting materials, and their crystal structure has been refined by X-ray diffraction. The high-temperature (350–1000 K) experimental heat capacity data obtained for the germanates by differential scanning calorimetry have been used to calculate their principal thermodynamic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Yamane, H., Tanimura, R., Yamada, T., et al., Synthesis and crystal structure of CaY2Ge3O10 and CaY2Ge4O12, J. Solid State Chem., 2006, vol. 179, pp. 289–295.https://doi.org/10.1016/j.jss.2005.10.023

    Article  CAS  Google Scholar 

  2. Lipina, O.A., Surat, L.L., Melkozerova, M.A., et al., Synthesis, crystal structure, and luminescence properties of CaY2Ge3O10:Ln3+, Ln = Eu, Tb, Opt. Spectrosc., 2014, vol. 116, no. 5, pp. 695–699.https://doi.org/10.1134/S0030400X14050130

    Article  CAS  Google Scholar 

  3. Lipina, O.A., Surat, L.L., Tyutyunnik, A.P., et al., Synthesis and structural study of a new group of trigermanates, CaRE2Ge3O10 (RE = La–Yb), CrystEngComm, 2015, pp. 1–12.https://doi.org/10.1039/c5ce00063g

  4. Leonidov, I.I., Petrov, V.P., Chernyshev, V.A., et al., Structural and vibrational properties of the ordered Y2CaGe4O12 germanate: a periodic ab initio study, J. Phys. Chem. C, 2014, vol. 118, pp. 8090–8101.https://doi.org/10.1021/jp410492a

    Article  CAS  Google Scholar 

  5. Zubkov, V.G., Leonidov, I.I., Tyutyunnik, A.P., et al., Luminescence in Ln2CaGe4O12 under infrared laser excitation, J. Lumin., 2009, vol. 129, pp. 1625–1628.https://doi.org/10.1016/jlumin.2009.03.037

    Article  CAS  Google Scholar 

  6. Zubkov, V.G., Leonidov, I.I., Tyutyunnik, A.P., et al., Crystal structure and optical properties of germanates Ln 2Ca(GeO3)4 (Ln = Gd, Ho, Er, Yb, Y), Phys. Solid State, 2008, vol. 50, no. 9, pp. 1699–1706.https://doi.org/10.1134/S1063783408090229

    Article  CAS  Google Scholar 

  7. Tarakina, N.V., Zubkov, V.G., Leonidov, I.I., et al., Crystal structure of the group of optical materials Ln2MeGe4O12 (Me = Ca, Mn), Z. Kristallogr., Suppl., 2009 vol. 30, pp. 401–406.https://doi.org/10.1524/zksu.2009.0059

    Article  Google Scholar 

  8. Zubkov, V.G., Tarakina, N.V., Leonidov, I.I., et al., Synthesis and crystal structure of Ln2M2+Ge4O12, Ln = rare-earth element of Y; M = Ca, Mn, Zn, J. Solid State Chem., 2010, vol. 183, pp. 1186–1194.https://doi.org/10.1016/j.ssc.2010.03.027

    Article  CAS  Google Scholar 

  9. Lipina, O.A., Surat, L.L., Melkozerova, M.A., et al., Synthesis, crystal structure and luminescence properties of CaY2 – xEuxGe3O10 (x = 0–2), J. Solid State Chem., 2013, vol. 206, pp. 117–121.https://doi.org/10.1016/j.jssc.2013.08.002

    Article  CAS  Google Scholar 

  10. Leonidov, I.I., Zubkov, V.G., Tyutyunnik, A.P., et al., Upconversion luminescence in Er3+/Yb3+ codoped Y2CaGe4)12, J. Alloys Compd., 2011, vol. 509, pp. 1339–1346.https://doi.org/10.1016/j.jallcom.2010.10.051

    Article  CAS  Google Scholar 

  11. Piccinelli, F., Lausi, A., and Bettinelli, M., Structural investigation of the new Ca3Ln2Ge3O12 (Ln = Pr, Nd, Sm, Gd and Dy) compounds and luminescence spectroscopy, J. Solid State Chem., 2013, vol. 205, pp. 190–196.https://doi.org/10.1016/j.jssc.2013.07.021

    Article  CAS  Google Scholar 

  12. Melkozerova, M.A., Tarakina, N.V., Maksimova, L.G., et al., Application of modified Pechini method for the synthesis of Ln2MGe4O12 (Ln = Y, Eu; M = Ca, Zn, Mn) optical hosts, J. Sol–Gel. Sci. Technol., 2011, vol. 59, pp. 338–344.https://doi.org/10.1007/s10971-011-2508-6

    Article  CAS  Google Scholar 

  13. Leonidov, I.I., Crystal-chemical design of germanate-based optical materials in the CaO–GeO2–Y2O3 system, IX natsional’naya kristallokhimicheskaya konferentsiya (Suzdal, 2018) (IX Natl. Crystal-Chemical Conf. (Suzdal, 2018)), Moscow: Granitsa, 2018, p. 69.

  14. Solovyov, L.A., Full-profile refinement by derivative difference minimization, J. Appl. Crystallogr., 2004, vol. 37, pp. 743–749.https://doi.org/10.1107/S0021889804015638

    Article  CAS  Google Scholar 

  15. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., Beletskii, V.V., and Denisov, V.M., High-temperature heat capacity and thermodynamic properties of Tb2Sn2O7, Inorg. Mater., 2017, vol. 53, no. 1, pp. 93–95.https://doi.org/-

    Article  CAS  Google Scholar 

  16. Chudnenko, K.V., Termodinamicheskoe modelirovanie v geokhimii: teoriya, algoritmy, programmnoe obespechenie, prilozheniya (Thermodynamic Modeling in Geochemistry: Theory, Algorithms, Software, and Applications), Novosibirsk: Geo, 2010.

  17. Maier, C.G. and Kelley, K.K., An equation for the representation of high temperature heat content data, J. Am. Chem. Soc., 1932, vol. 54, no. 8, pp. 3243–3246.https://doi.org/10.1021/ja01347a029

    Article  CAS  Google Scholar 

  18. Leitner, J., Chuchvalec, P., Sedmidubský, D., et al., Estimation of heat capacities of solid mixed oxides, Thermochim. Acta, 2003, vol. 395, pp. 27–46.https://doi.org/10.1016/S0040-6031(02)00176-6

    Article  CAS  Google Scholar 

  19. Leitner, J., Vonka, P., Sedmidubský, D., and Svoboda, P., Application of Neumann–Kopp rule for estimation of heat capacity of mixed oxides, Thermochim. Acta, 2010, vol. 497, pp. 7–13.https://doi.org/10.1016/j.tca.2009.08.002

    Article  CAS  Google Scholar 

  20. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., et al., Synthesis and high-temperature heat capacity of Y2Ge2O7, Russ. J. Inorg. Chem., 2018, vol. 63, no. 3, pp. 361–363.https://doi.org/10.1134/S003602361803004X

    Article  CAS  Google Scholar 

  21. Kumok, V.N., Problem of matching techniques for evaluating thermodynamic characteristics, in Pryamye i obratnye zadachi khimicheskoi termodinamiki (Direct and Inverse Problems in Chemical Thermodynamics), Novosibirsk: Nauka, 1987, pp. 108–123.

  22. Mostafa, A.T.M.G., Eakman, J.M., Montoya, M.M., and Yarbra, S.L., Prediction of heat capacities of solid inorganic salts from group contributions, Ind. Eng. Chem. Tes., 1996, vol. 35, pp. 343–348.

    Article  CAS  Google Scholar 

  23. Kubaschewski, O. and Alcock, S.B., Metallurgical Thermochemistry, Oxford: Pergamon, 1979, 5th ed.

    Google Scholar 

  24. Ivanova, L.I., Relationship between the heat capacity of solids and the temperature of their first phase transition, Zh. Neorg. Khim., 1961, vol. 35, no. 9, pp. 1809–1812.

    Google Scholar 

  25. Denisova, L.T., Molokeev, M.S., Kargin, Yu.F., et al., Synthesis, crystal structure, and thermodynamic properties of CuSm2Ge2O8, Russ. J. Inorg. Chem., 2021, vol. 66, no. 12, pp. 1817–1821.https://doi.org/10.1134/S0036023621120196

    Article  CAS  Google Scholar 

  26. Morachevskii, A.G., Sladkov, I.B., and Firsova, E.G., Termodinamicheskie raschety v khimii i metallurgii (Thermodynamic Calculations in Chemistry and Metallurgy), St. Petersburg: Lan’, 2018.

  27. Moiseev, G.K., Vatolin, N.A., Marshuk, L.A., and Il’inykh, N.I., Temperaturnye zavisimosti privedennoi energii Gibbsa nekotorykh neorganicheskikh veshchestv (al’ternativnyi bank dannykh ASTRA.OWN) (Temperature-Dependent Reduced Gibbs Energy of Some Inorganic Substances: ASTRA.OWN Alternative Database), Yekaterinburg: Ural’sk. Otd. Ross. Akad. Nauk, 1997.

    Google Scholar 

  28. Leitner, J., Sedmidubský, D., and Chuchvalec, P., Prediction of heat capacities of solid binary oxides from group contribution method, Ceram.-Silik., 2002, vol. 46, no. 1, pp. 29–32.

    CAS  Google Scholar 

  29. Tret’yakov, Yu.D., Tverdofaznye reaktsii (Solid-State Reactions), Moscow: Khimiya, 1978.

  30. Tananaev, I.V. and Shpirt, M.Ya., Khimiya germaniya (Chemistry of Germanium), Moscow: Khimiya, 1967.

  31. Reznitskii, L.A., Kalorimetriya tverdogo tela (strukturnye, magnitnye, elektronnye prevrashcheniya) (Calorimety of Solids: Structural, Magnetic, and Electronic Transformations), Moscow: Mosk. Gos. Univ., 1981.

Download references

ACKNOWLEDGMENTS

We are grateful to the Krasnoyarsk Regional Shared Research Facilities Center, Krasnoyarsk Scientific Center (Federal Research Center), Siberian Branch, Russian Academy of Sciences.

Funding

This work was supported in part by the Russian Federation Ministry of Science and Higher Education as part of the state research target for the Siberian Federal University federal state autonomous educational institution of higher education, project no. FSRZ-2020-0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. T. Denisova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denisova, L.T., Molokeev, M.S., Kargin, Y.F. et al. High-Temperature Heat Capacity and Thermodynamic Properties of the CaY2Ge3O10 and CaY2Ge4O12 Germanates. Inorg Mater 58, 414–419 (2022). https://doi.org/10.1134/S0020168522040033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522040033

Keywords:

Navigation