Skip to main content
Log in

Synthesis and Phase Transformations of Compounds in the Mg4Na(PO4)3–Mg3(PO4)2 System as Promising Phases for the Fabrication of Bioceramics

  • Published:
Inorganic Materials Aims and scope

Abstract—

Phase transformations of the magnesium sodium double phosphates Mg4Na(PO4)3 and MgNaPO4 in the Mg4Na(PO4)3–Mg3(PO4)2 system have been studied by thermal analysis and X-ray diffraction. Optimal conditions for the preparation of phase-pure MgNaPO4 are ensured by solid-state synthesis with heat treatment at 900°C, followed by additional firing at 600°C, which is related to the polymorphic transformations of this phase at temperatures of 893 and 727°C. The polymorphism of Mg4Na(PO4)3 has been studied in detail. It has been shown that this compound undergo a polymorphic transformation at 1025°C and decompose incongruently at 1141°C. The synthesized compounds can be used as a basis for the fabrication of bioceramic materials for osteoplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Mailoo, V.J., Srinivas, V., Turner, J., and Fraser, W.D., Beware of bone pain with bisphosphonates, BMJ Case Rep. CP, 2019, vol. 12, no. 3, paper e225385.https://doi.org/10.1136/bcr-2018-225385

  2. Benwood, C., Chrenek, J., Kirsch, R.L., Masri, N.Z., Richards, H., Teetzen, K., and Willerth, S.M., Natural biomaterials and their use as bioinks for printing tissues, Bioengineering, 2021, vol. 8, no. 2, paper 27.https://doi.org/10.3390/bioengineering8020027

  3. Preobrazhenskiy, I.I., Tikhonov, A.A., Klimashina, E.S., Evdokimov, P.V., and Putlyaev, V.I., Swelling of acrylate hydrogels filled with brushite and octacalcium phosphate, Izv. Akad. Nauk, Ser. Khim., 2020, no. 8, pp. 1601–1603. https://elibrary.ru/item.asp?id=43862779.

  4. Debons, N., Matsumoto, K., Hirota, N., Coradin, T., Ikoma, T., and Aimé, C., Magnetic field alignment, a perspective in the engineering of collagen–silica composite biomaterials, Biomolecules, 2021, vol. 11, no. 5, paper 749.https://doi.org/10.3390/biom11050749

  5. Preobrazhenskiy, I.I., Tikhonov, A.A., Evdokimov, P.V., Shibaev, A.V., and Putlyaev, V.I., DLP printing of hydrogel/calcium phosphate composites for the treatment of bone defects, Open Ceram., 2021, vol. 6, paper 100115.https://doi.org/10.1016/j.oceram.2021.100115

  6. Lu, F., Wu, R., Shen, M., Xie, L., Liu, M., Li, Y., et al., Rational design of bioceramic scaffolds with tuning pore geometry by stereolithography: microstructure evaluation and mechanical evolution, J. Eur. Ceram. Soc., 2021, vol. 41, no. 2, pp. 1672–1682.https://doi.org/10.1016/j.jeurceramsoc.2020.10.002

    Article  CAS  Google Scholar 

  7. Fadeeva, I.V., Goldberg, M.A., Preobrazhensky, I.I., Mamin, G.V., Davidova, G.A., Agafonova, N.V., et al., Improved cytocompatibility and antibacterial properties of zinc-substituted brushite bone cement based on β-tricalcium phosphate, J. Mater. Sci.: Mater. Med., 2021, vol. 32, no. 9, pp. 1–12.https://doi.org/10.1007/s10856-021-06575-x

    Article  CAS  Google Scholar 

  8. Fadeeva, I.V., Fomin, A.S., Barinov, S.M., Davydova, G.A., Selezneva, I.I., Preobrazhenskii, I.I., Rusakov, M.K., Fomina, A.A., and Volchenkova, V.A., Synthesis and properties of manganese-containing calcium phosphate materials, Inorg. Mater., 2020, vol. 56, no. 7, pp. 700–706.https://doi.org/10.1134/S0020168520070055

    Article  CAS  Google Scholar 

  9. Es-saddik, M., Laasri, S., Taha, M., Laghzizil, A., Guidara, A., Chaari, K., et al., Effect of the surface chemistry on the stability and mechanical properties of the zirconia–hydroxyapatite bioceramic, Surf. Interface, 2021, vol. 23, paper 100980.https://doi.org/10.1016/j.surfin.2021.100980

  10. Yazdimamaghani, M., Razavi, M., Vashaee, D., and Tayebi, L., Development and degradation behavior of magnesium scaffolds coated with polycaprolactone for bone tissue engineering, Mater. Lett., 2014, vol. 132, pp. 106–110.https://doi.org/10.1016/j.matlet.2014.06.036

    Article  CAS  Google Scholar 

  11. Wolf, F.I. and Cittadini, A., Chemistry and biochemistry of magnesium, Mol. Aspects Med., 2003, vol. 24, no. 1, pp. 3–9.https://doi.org/10.1016/s0098-2997(02)00087-0

    Article  CAS  PubMed  Google Scholar 

  12. Jahnen-Dechent, W. and Ketteler, M., Magnesium basics, Clin. Kidney J., 2012, vol. 5, pp. i3–i14.https://doi.org/10.1093/ndtplus/sfr163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rude, R.K., Gruber, H.E., Wei, L.Y., Frausto, A., and Mills, B.G., Magnesium deficiency: effect on bone and mineral metabolism in the mouse, Calcif. Tissue Int., 2003, vol. 72, no. 1, pp. 32–41.https://doi.org/10.1007/s00223-001-1091-1

    Article  CAS  PubMed  Google Scholar 

  14. Xue, W., Dahlquist, K., Banerjee, A., Bandyopadhyay, A., and Bose, S., Synthesis and characterization of tricalcium phosphate with Zn and Mg based dopants, J. Mater. Sci.: Mater. Med., 2008, vol. 19, no. 7, pp. 2669–2677.https://doi.org/10.1007/s10856-008-3395-4

    Article  CAS  Google Scholar 

  15. Morelli, M.B., Santulli, G., and Gambardella, J., Calcium supplements: good for the bone, bad for the heart? a systematic updated appraisal, Atherosclerosis, 2020, vol. 296, pp. 68–73.https://doi.org/10.1016/j.atherosclerosis.2020.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Massit, A., El Yacoubi, A., Kholtei, A., and El Idrissi, B.C., XRD and FTIR analysis of magnesium substituted tricalcium calcium phosphate using a wet precipitation method, Biointerface Res. Appl. Chem., 2021, vol. 11, pp. 8034–8042.https://doi.org/10.33263/BRIAC111.80348042

    Article  CAS  Google Scholar 

  17. Zhang, S., Li, L., and Lv, X., Synthesis and characterization of a novel Mg3(PO4)2 ceramic with low dielectric constant, J. Mater. Sci.: Mater. Electron., 2017, vol. 28, no. 2, pp. 1620–1623.https://doi.org/10.1007/s10854-016-5703-y

    Article  CAS  Google Scholar 

  18. Klammert, U., Ignatius, A., Wolfram, U., Reuther, T., and Gbureck, U., In vivo degradation of low temperature calcium and magnesium phosphate ceramics in a heterotopic model, Acta Biomater., 2011, vol. 7, no. 9, pp. 3469–3475.https://doi.org/10.1016/j.actbio.2011.05.022

    Article  CAS  PubMed  Google Scholar 

  19. Abbona, F., Madsen, H.L., and Boistelle, R., Crystallization of two magnesium phosphates, struvite and newberyite: effect of pH and concentration, J. Cryst. Growth, 1982, vol. 57, no. 1, pp. 6–14.https://doi.org/10.1016/0022-0248(82)90242-1

    Article  CAS  Google Scholar 

  20. Sronsri, C., Sittipol, W., and Kongpop, U., Optimization of biodiesel production using magnesium pyrophosphate, Chem. Eng. Sci., 2020, vol. 226, paper 115884.https://doi.org/10.1016/j.ces.2020.115884

  21. Alkemper, J. and Fuess, H., The crystal structures of NaMgPO4, Na2CaMg(PO4)2 and Na18Ca13Mg5(PO4)18: new examples for glaserite related structures, Z. Kristallogr.–Cryst. Mater., 1998, vol. 213, no. 5, pp. 282–287.https://doi.org/10.1524/zkri.1998.213.5.282

    Article  CAS  Google Scholar 

  22. Kaprálik, I. and Potančok, M., Calcium oxide–magnesium oxide–sodium phosphite system at subsolidus temperatures, Chem. Papers, 1971, vol. 25, no. 4, pp. 272–279.

    Google Scholar 

  23. Majling, J. and Hanic, F., Phase coexistence in the system Mg3(PO4)2–Ca3(PO4)2–Na3PO4, Chem. Zvesti, 1976, vol. 30, no. 2, pp. 145–152.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Preobrazhenskiy.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Preobrazhenskiy, I.I., Putlyaev, V.I. Synthesis and Phase Transformations of Compounds in the Mg4Na(PO4)3–Mg3(PO4)2 System as Promising Phases for the Fabrication of Bioceramics. Inorg Mater 58, 349–355 (2022). https://doi.org/10.1134/S0020168522030128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522030128

Keywords:

Navigation