Skip to main content
Log in

Increased Manganese Solubility and Ferromagnetic Signal in Chalcopyrite CuGaSe2:Mn as a Result of High-Temperature Quenching

  • Published:
Inorganic Materials Aims and scope

Abstract—

Two series of manganese-doped chalcopyrite CuGaSe2 samples have been prepared by solid-state reactions. Because of its low solubility, the manganese is distributed between chalcopyrite lattice sites, ensuring paramagnetic properties, and manganese-containing antiferromagnetic impurity phases. Quenching the samples from 1000°C has made it possible to considerably increase the ferromagnetic response, which begins to rise starting at a certain doping level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Dietl, T., Bonanni, A., and Ohno, H., Families of magnetic semiconductors—an overview, J. Semicond., 2019, vol. 40, no. 8, paper 080301.https://doi.org/10.1088/1674-4926/40/8/080301

  2. Dietl, T., Ohno, H., and Matsukura, F., Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors, Phys. Rev. B: Condens. Matter Mater. Phys., 2001, vol. 63, no. 19, paper 195205.https://doi.org/10.1103/PhysRevB.63.195205

  3. Ohno, H., Making nonmagnetic semiconductors ferromagnetic, Science, 1998, vol. 281, no. 5379, pp. 951–956.https://doi.org/10.1126/science.281.5379.951

    Article  CAS  PubMed  Google Scholar 

  4. Ohno, H., Chiba, D., Matsukura, F., Omiya, T., Abe, E., Dietl, T., Ohno, Y., and Ohtani, K., Electric-field control of ferromagnetism, Nature, 2000, vol. 408, no. 6815, pp. 944–946.https://doi.org/10.1038/35050040

    Article  CAS  PubMed  Google Scholar 

  5. Chiba, D., Yamanouchi, H., Hatsukura, F., and Ohno, H., Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor, Science, 2003, vol. 301, no. 5635, pp. 943–945.https://doi.org/10.1126/science.1086608

    Article  CAS  PubMed  Google Scholar 

  6. Chen, L., Yang, X., Yang, F., Zhao, J., Misuraca, J., Xiong, P., and von Molnár, S., Enhancing the Curie temperature of ferromagnetic semiconductor (Ga,Mn)As to 200 K via nanostructure engineering, Nano Lett., 2011, vol. 11, no. 7, pp. 2584–2589.https://doi.org/10.1021/nl201187m

    Article  CAS  PubMed  Google Scholar 

  7. Jaffe, J.E. and Zunger, A., Electronic structure of the ternary chalcopyrite semiconductors CuAlS2, CuGaS2, CuInS2, CuAlSe2, CuGaSe2, and CuInSe2, Phys. Rev. B: Condens. Matter Mater. Phys., 1983, vol. 28, no. 10, pp. 5822–5847.https://doi.org/10.1103/PhysRevB.28.5822

    Article  CAS  Google Scholar 

  8. Zhao, Y.J. and Freeman, A.J., First-principles prediction of a new class of ferromagnetic semiconductors, J. Magn. Magn. Mater., 2002, vol. 246, nos. 1–2, pp. 145–150.https://doi.org/10.1016/S0304-8853(02)00042-2

    Article  CAS  Google Scholar 

  9. Picozzi, S., Zhao, Y.J., Freeman, A.J., and Delley, B., Mn-doped (formula presented) chalcopyrites: an ab initio study of ferromagnetic semiconductors, Phys. Rev. B: Condens. Matter Mater. Phys., 2002, vol. 66, no. 20, pp. 1–6.https://doi.org/10.1103/PhysRevB.66.205206

    Article  CAS  Google Scholar 

  10. Freeman, A.J. and Zhao, Y.J., Advanced tetrahedrally-bonded magnetic semiconductors for spintronic applications, J. Phys. Chem. Solids, 2003, vol. 64, nos. 9–10, pp. 1453–1459.https://doi.org/10.1016/S0022-3697(03)00120-3

    Article  CAS  Google Scholar 

  11. Zhao, Y.J. and Zunger, A., Electronic structure and ferromagnetism of Mn-substituted CuAlS2, CuGaS2, CuInS2, CuGaSe2, and CuGaTe2, Phys. Rev. B: Condens. Matter Mater. Phys., 2004, vol. 69, no. 10, pp. 1–8.https://doi.org/10.1103/PhysRevB.69.104422

    Article  CAS  Google Scholar 

  12. Yao, J., Rudyk, B.W., Brunetta, C.D., Knorr, K.B., Figore, H.A., Mar, A., and Aitken, J.A., Mn incorporation in CuInS2 chalcopyrites: structure, magnetism and optical properties, Mater. Chem. Phys., 2012, vol. 136, nos. 2–3, pp. 415–423.https://doi.org/10.1016/j.matchemphys.2012.06.066

    Article  CAS  Google Scholar 

  13. Tsujii, N., Kitazawa, H., and Kido, G., Electric and magnetic properties of Mn- and Fe-doped CuInS2 compounds, Phys. Status Solidi, Appl. Res., 2002, vol. 189, no. 3, pp. 951–954.https://doi.org/10.1002/1521-396X(200202)189:3<951::AID-PSSA951>3.0.CO;2-7

    Article  CAS  Google Scholar 

  14. Yao, J., Kline, C.N., Gu, H., Yan, M., and Aitken, J.A., Effects of Mn substitution on the structure and properties of chalcopyrite-type CuInSe2, J. Solid State Chem., 2009, vol. 182, no. 9, pp. 2579–2586.https://doi.org/10.1016/j.jssc.2009.07.014

    Article  CAS  Google Scholar 

  15. Quintero, M., Grima, P., Avon, J.E., Lamarche, G., and Woolley, J.C., Phase diagram, optical energy gap, and magnetic susceptibility of (CuIn)1 – zMn2zSe2 alloys, Phys. Status Solidi, 1988, vol. 108, no. 2, pp. 599–606.https://doi.org/10.1002/pssa.2211080214

    Article  CAS  Google Scholar 

  16. Aminov, T.G., Efimov, N.N., Shabunina, G.G., and Novotortsev, V.M., Magnetic properties of CuGa0.94Mn0.06Te2, Inorg. Mater., 2012, vol. 48, no. 6, pp. 569–576.https://doi.org/10.1134/S0020168512060027

    Article  CAS  Google Scholar 

  17. Lin, L.J., Wernick, J.H., Tabatabaie, N., Hull, G.W., and Meagher, B., Structure and magnetic properties of the dilute magnetic semiconductor Mn:CuInTe2, Appl. Phys. Lett., 1987, vol. 51, no. 24, pp. 2051–2053.https://doi.org/10.1063/1.98289

    Article  CAS  Google Scholar 

  18. Lamarche, G., Woolley, J.C., Tovar, R., Quintero, M., and Sagredo, V., Effects of crystallographic ordering on the magnetic behaviour of (AgIn)1 – zMn2zTe2 and (CuIn)1 – zMn2zTe2 alloys, J. Magn. Magn. Mater., 1989, vol. 80, nos. 2–3, pp. 321–328.https://doi.org/10.1016/0304-8853(89)90137-6

    Article  CAS  Google Scholar 

  19. Quintero, M. and Woolley, J.C., Crystallography and optical energy gap values for Cd2x(AgIn)yMn2zTe2 alloys, Phys. Status Solidi, 1985, vol. 92, no. 2, pp. 449–456.https://doi.org/10.1002/pssa.2210920214

    Article  CAS  Google Scholar 

  20. Quintero, M., Dierker, L., and Woolley, J.C., Crystallography and optical energy gap values for Cd2x(CuIn)yMn2zTe2 alloys, J. Solid State Chem., 1986, vol. 63, no. 1, pp. 110–117.https://doi.org/10.1016/0022-4596(86)90158-1

    Article  CAS  Google Scholar 

  21. Sato, K., Medvedkin, G.A., Ishibashi, T., Mitani, S., Takanashi, K., Ishida, Y., Sarma, D.D., Okabayashi, J., Fujimori, A., Kamatani, T., and Akai, H., Novel Mn-doped chalcopyrites, J. Phys. Chem. Solids, 2003, vol. 64, nos. 9–10, pp. 1461–1468.https://doi.org/10.1016/S0022-3697(03)00101-X

    Article  CAS  Google Scholar 

  22. Koroleva, L.I., Zashchirinskii, D.M., Khapaeva, T.M., Morozov, A.I., Marenkin, S.F., Fedorchenko, I.V., and Szymczak, R., Manganese-doped CdGeAs2, ZnGeAs2 and ZnSiAs2 chalcopyrites: a new materials for spintronics, J. Magn. Magn. Mater., 2011, vol. 323, no. 23, pp. 2923–2928.https://doi.org/10.1016/j.jmmm.2011.05.054

    Article  CAS  Google Scholar 

  23. Marenkin, S.F., Chernavskii, P.A., Ril, A.I., Pankina, G.V., Fedorchenko, I.V., and Kozlov V.V., Particle size effects on calorimetric and magnetic properties of the ferromagnetic phase in the eutectic composite alloy of ZnSnAs2–MnAs system, Russ. J. Inorg. Chem., 2019, vol. 64, no. 12, pp. 1494–1498.https://doi.org/10.1134/S0036023619120088

    Article  CAS  Google Scholar 

  24. Polman, A., Knight, M., Garnett, E.C., Ehrler, B., and Sinke, W.C., Photovoltaic materials: present efficiencies and future challenges, Science, 2016, vol. 352, no. 6283, paper aad4424.https://doi.org/10.1126/science.aad4424

  25. Zykin, M.A. and Efimov, N.N., Synthesis and magnetic properties of manganese doped chalcopyrites CuGaSe2:Mn, Russ. J. Inorg. Chem., 2022, vol. 67, no. 2 (in press).

Download references

ACKNOWLEDGMENTS

In this work, we used equipment (Bruker D8 Advance diffractometer and Quantum Design PPMS-9 magnetometer) at the Shared Physical Characterization Facilities Center, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 19-33-60080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Zykin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zykin, M.A., Efimov, N.N. Increased Manganese Solubility and Ferromagnetic Signal in Chalcopyrite CuGaSe2:Mn as a Result of High-Temperature Quenching. Inorg Mater 58, 18–25 (2022). https://doi.org/10.1134/S0020168522010150

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522010150

Keywords:

Navigation