Skip to main content
Log in

Effect of Silicon Carbide Whiskers on the Physicomechanical Properties of ZrB2/SiC Ceramic Composite Materials

  • Published:
Inorganic Materials Aims and scope

Abstract—

ZrB2/(20 – х)SiC/хSiCw (х = 0.5–1.5 vol %) ceramic composite materials have been produced by spark plasma sintering, and their physicomechanical and thermophysical properties have been shown to be influenced by the percentage of the silicon carbide whiskers. The best properties are offered by the ZrB2/SiC ceramic composite material containing 0.5 vol % silicon carbide whiskers. The addition of silicon carbide whiskers has been shown to ensure an increase in apparent density to 99.7% and a reduction in open porosity to 0.13%. Moreover, it increases the microhardness of the composites to 16.4 GPa, their critical stress intensity factor to 5.7 MPa m1/2, and their bending strength to 580 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Niihara, K., Nakahira, A., and Vincentini, P., Advanced Structural Inorganic Composites, Trieste: Elsevier, 1990, pp. 637–664.

    Google Scholar 

  2. Mallik, M., Roy, S., and Ray, K., Effect of SiC content, additives and process parameters on densification and structure-property relations of pressureless sintered ZrB2–SiC composites, Ceram. Int., 2013, vol. 39, pp. 2915–2932.

    Article  CAS  Google Scholar 

  3. Zhang, S., Hilmas, G., and Fahrenholtz, W., Mechanical properties of sintered ZrB2–SiC ceramics, J. Eur. Ceram. Soc., 2011, vol. 31, pp. 893–901.

    Article  CAS  Google Scholar 

  4. Ikegami, M., Guo, S., and Kagawa, Y., Densification behavior and microstructure of spark plasma sintered ZrB2-based composites with SiC particles, Ceram. Int., 2012, vol. 38, pp. 769–774.

    Article  CAS  Google Scholar 

  5. Patel, M., Singh, V., and Reddy, J., Densification mechanisms during hot pressing of ZrB2–20 vol. % SiC composite, Scr. Mater., 2013, vol. 69, pp. 370–373.

    Article  CAS  Google Scholar 

  6. Quo, S., Densification of ZrB2-based composites and their mechanical and physical properties: a review, J. Eur. Ceram. Soc., 2009, vol. 29, pp. 995–1011.

    Article  Google Scholar 

  7. Zhu, M. and Wang, Y., Pressureless sintering ZrB2–SiC ceramics at low temperatures, Mater. Lett., 2009, vol. 63, pp. 2035–2037.

    Article  CAS  Google Scholar 

  8. Sevast'yanov, V.G., Simonenko, E.P., and Simonenko, N.P., Preparation of silicon carbide whiskers in the bulk of SiC ceramics with the use of a sol–gel process, Kompoz. Nanostrukt., 2014, vol. 6, no. 4, pp. 198–211.

    CAS  Google Scholar 

  9. Han, J., Hu, P., and Zhang, X., Oxidation-resistant ZrB2–SiC composites at 2200°C, Compos. Sci. Technol., 2008, vol. 68, pp. 799–806.

    Article  CAS  Google Scholar 

  10. Akin, I., Hotta, M., and Sahin, F., Microstructure and densification of ZrB2–SiC composites prepared by spark plasma sintering, J. Eur. Ceram. Soc., 2009, vol. 29, pp. 2379–2385.

    Article  CAS  Google Scholar 

  11. Sorokin, O.Yu., Grashchenkov, D.V., and Solntsev, S.St., Ceramic composite materials with high oxidation resistance for advanced aircraft (a review), Tr. VIAM, 2014, no. 6, pp. 11–16.

  12. Sorokin, O.Yu., Solntsev, S.St., and Evdokimov, S.A., Hybrid spark plasma sintering: principle, capabilities, and potential application areas, Aviats. Mater. Tekhnol., 2014, no. S6, pp. 11–16.

  13. Chamberlain, A., Fahrenholtz, W., and Hilmas, G., High-strength zirconium diboride-based ceramics, J. Am. Ceram. Soc., 2004, vol. 87, no. 6, pp. 1170–1172.

    Article  CAS  Google Scholar 

  14. Zhu, S., Fahrenholtz, W., and Hilmas, G., Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride–silicon carbide ceramics, J. Eur. Ceram. Soc., 2007, vol. 27, pp. 2077–2083.

    Article  CAS  Google Scholar 

  15. Yang, F., Zhang, X., and Han, J., Characterization of hot-pressed short carbon fiber reinforced ZrB2–SiC ultra-high temperature ceramic composites, J. Alloys. Compd., 2009, vol. 472, pp. 395–399.

    Article  CAS  Google Scholar 

  16. Zhou, S., Wang, Z., and Zhang, W., Effect of graphite flake orientation on microstructure and mechanical properties of ZrB2–SiC–graphite composite, J. Alloys. Compd., 2009, vol. 485, pp. 181–185.

    Article  CAS  Google Scholar 

  17. Zhu, T., Xu, L., and Zhang, X., Densification, microstructure and mechanical properties of ZrB2–SiCw ceramic composites, J. Eur. Ceram. Soc., 2009, vol. 29, pp. 2893–2901.

    Article  CAS  Google Scholar 

  18. Zhang, X., Xu, L., and Du, S., Fabrication and mechanical properties of ZrB2–SiCw ceramic matrix composite, Mater. Lett., 2008, vol. 62, pp. 1058–1060.

    Article  CAS  Google Scholar 

  19. Zhang, X., Xu, L., and Du, S., Spark plasma sintering and hot pressing of ZrB2–SiCw ultra-high temperature ceramics, J. Alloys. Compd., 2008, vol. 466, pp. 241–245.

    Article  CAS  Google Scholar 

  20. Lin, J., Huang, Y., and Zhang, H., Damage resistance, R-curve behavior and toughening mechanisms of ZrB2-based composites with SiC whiskers and ZrO2 fibers, Ceram. Int., 2015, vol. 41, pp. 2690–2698.

    Article  CAS  Google Scholar 

  21. Wang, H., Wang, C., and Yao, X., Processing and mechanical properties of zirconium diboride-based ceramics prepared by spark plasma sintering, J. Am. Ceram. Soc., 2007, vol. 90, no. 7, pp. 1992–1997.

    Article  CAS  Google Scholar 

  22. Zhang, X., Xu, L., and Du, S., Thermal shock behavior of SiC whisker-reinforced diboride ultrahigh-temperature ceramics, Scr. Mater., 2008, vol. 59, no. 1, pp. 55–58.

    Article  CAS  Google Scholar 

  23. Chen, D., Xu, L., and Zhang, X., Preparation of ZrB2 based hybrid composites reinforced with SiC whiskers and SiC particles by hot-pressing, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, pp. 792–795.

    Article  CAS  Google Scholar 

  24. Zhanga, L., Weib, C., and Lib, S., Mechanical and thermal shock properties of laminated ZrB2–SiC/SiCw ceramics, Ceram. Int., 2019, vol. 45, pp. 6503–6508.

    Article  Google Scholar 

  25. Kablov, E.N., Innovative solutions at the All-Russia Research Institute of Aviation Materials (Russian Federation State Scientific Center) for implementation of “The Strategic Directions in the Development of Materials and Materials Processing Technologies over a period of up to 2030,” Aviats. Mater. Tekhnol., 2015, no. 1, pp. 3–33.

  26. Niihara, K., Morena, R., and Hasselman, D., Evaluation of K Ic of brittle solids by the indentation method with low crack-to-indent ratios, J. Mater. Sci. Lett., 1982, vol. 1, pp. 13–16.

    Article  CAS  Google Scholar 

  27. Niihara, K., A fracture mechanics analysis of indentation-induced Palmqvist crack in ceramics, J. Mater. Sci. Lett., 1983, vol. 2, pp. 221–223.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Voronov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voronov, V.A., Lebedeva, Y.E., Chainikova, A.S. et al. Effect of Silicon Carbide Whiskers on the Physicomechanical Properties of ZrB2/SiC Ceramic Composite Materials. Inorg Mater 58, 104–110 (2022). https://doi.org/10.1134/S0020168522010137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522010137

Keywords:

Navigation