Skip to main content
Log in

Synthesis, Temperature Behavior, and Hydrolytic Stability of Na–Zr and Ca–Zr Phosphate Molybdates and Phosphate Tungstates

  • Published:
Inorganic Materials Aims and scope

Abstract—

We have synthesized Na1 – xZr2(PO4)3 – x(ХO4)x and Сa0.5 – xZr2(PO4)3 – x(ХO4)x (X = Mo, W; 0 ≤ x ≤ 0.5) compounds with the NZP structure. Their thermal expansion has been studied in the temperature range 25–800°C using high-temperature X-ray diffraction and shown to have a tendency to decrease as the occupancy of the extraframework sites in their structure decreases. Ceramic samples with a relative density above 97.5% have been prepared from the synthesized phosphate molybdates and phosphate tungstates by spark plasma sintering. Their strength characteristics (microhardness and fracture toughness) have been determined and they have been characterized by hydrolytic stability tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Orlova, A.I. and Koryttseva, A.K., Phosphates of pentavalent elements: structure and properties, Crystallogr. Rep., 2004, vol. 49, no. 5, pp. 724–732.

    Article  CAS  Google Scholar 

  2. Orlova, A.I., Isomorphism in crystalline phosphates of the NaZr2(PO4)3 structural type and radiochemical problems, Radiochemistry, 2002, vol. 44, no. 5, pp. 423–445.

    Article  CAS  Google Scholar 

  3. Volkov, Yu.F., Tomilin, S.V., Orlova, A.I., et al., Rhombohedral actinide phosphates AI \({\text{M}}_{{\text{2}}}^{{{\text{IV}}}}\)(PO4)3 (MIV = U, Np, Pu; AI = Na, K, Rb), Radiochemistry, 2003, vol. 45, no. 4, pp. 319–328.

    Article  CAS  Google Scholar 

  4. Oikonomou, P., Dedeloudis, Ch., Stournaras, C.J., and Ftikos, Ch., [NZP]: a new family of ceramics with low thermal expansion and tunable properties, J. Eur. Ceram. Soc., 2007, vol. 27, pp. 1253–1258.

    Article  CAS  Google Scholar 

  5. Oota, T. and Yamai, I., Thermal expansion behavior of NaZr2(PO4)3 type compounds, J. Am. Ceram. Soc., 1986, vol. 69, no. 1, pp. 1–8.

    Article  CAS  Google Scholar 

  6. Alamo, J. and Roy, R., Ultralow-expansion ceramics in the system Na2O–ZrO2–P2O5–SiO2, J. Am. Ceram. Soc., 1984, vol. 67, no. 5, pp. 78–80.

    Article  Google Scholar 

  7. Orlova, A.I., Kanunov, A.E., Samoilov, S.G., Kazakova, A.Yu., and Kazantsev, G.N., Study of calcium-containing orthophosphates of NaZr2(PO4)3 structural type by high-temperature X-ray diffraction, Crystallogr. Rep., 2013, vol. 58, no. 2, pp. 204–209.

    Article  CAS  Google Scholar 

  8. Srikari Tantri, P., Ushadevi, S., and Ramasesha, S.K., High temperature X-ray studies on barium and strontium zirconium phosphate based low thermal expansion materials, Mater. Res. Bull., 2002, vol. 37, pp. 1141–1147.

    Article  Google Scholar 

  9. Alamo, J. and Roy, R., Zirconium phospho-sulfates with NaZr2(PO4)3-type structure, J. Solid State Chem., 1984, vol. 51, no. 2, pp. 270–273.

    Article  CAS  Google Scholar 

  10. Savinykh, D.O., Khainakov, S.A., Orlova, A.I., et al., New phosphate–sulfates with NZP structure, Russ. J. Inorg. Chem., 2018, vol. 63, no. 6, pp. 685–694.

    Article  Google Scholar 

  11. Pet’kov, V.I., Sukhanov, M.V., Shipilov, A.S., et al., Synthesis and structure of alkali metal zirconium vanadate phosphates, Russ. J. Inorg. Chem., 2013, vol. 58, no. 9, pp. 1015–1021.

    Article  Google Scholar 

  12. Sukhanov, M.V., Pet’kov, V.I., Firsov, D.V., et al., Synthesis, structure, and thermal expansion of sodium zirconium arsenate phosphates, Russ. J. Inorg. Chem., 2011, vol. 56, no. 9, pp. 1351–1357.

    Article  CAS  Google Scholar 

  13. Slater, P.R. and Greaves, C., Synthesis and conductivities of sulfate/selenite phases related to Nasicon, J. Solid State Chem., 1993, vol. 107, pp. 12–18.

    Article  CAS  Google Scholar 

  14. Pet’kov, V.I., Sukhanov, M.V., and Kurazhkovskaya, V.S., Molybdenum fixation in crystalline NZP matrices, Radiochemistry, 2003, vol. 45, no. 6, pp. 620–625.

    Article  Google Scholar 

  15. Rashmi Chourasiaa, Shrivastavaa, P., and Wattal, P.K., Synthesis, characterization and structure refinement of sodium zirconium molibdato-phosphate: Na0.9Zr2Mo0.1P2.9O12 (MoNZP), J. Alloys Compd., 2009, vol. 473, pp. 579–583.

    Article  Google Scholar 

  16. Petkov, V.I., Orlova, A.I., and Egorkova, O.V., On the existence of phases with a structure of NaZr2(PO4)3 in series of binary orthophosphates with different alkaline element to zirconium ratios, J. Struct. Chem., 1996, vol. 37, no. 6, pp. 933–940.

    Article  Google Scholar 

  17. Anantharamulu, N., Koteswara Rao, K., Rambabu, G., et al., A wide-ranging review on Nasicon type materials, J. Mater. Sci., 2011, vol. 46, paper 2821.

  18. Orlova, A.I., Pet’kov, V.I., and Egor’kova, O.V., Preparation and structure of zirconium alkali metal mixed orthophosphates, Radiokhimiya, 1996, vol. 38, no. 1, pp. 15–21.

    CAS  Google Scholar 

  19. Abmamouch, R., Arsalane, S., Kasimi, M., and Zijad, M., Synthesis and properties of copper-hafnium triphosphate CuIHf2(PO4)3, Mater. Res. Bull., 1997, vol. 32, no. 6, pp. 755–761.

    Article  Google Scholar 

  20. Orlova, A.I., Kemenov, D. V., Samoilov, S.G., et al., Thermal expansion of NZP-family alkali-metal (Na, K) zirconium phosphates, Inorg. Mater., 2000, vol. 36, no. 8, pp. 915–920.

    Article  Google Scholar 

  21. Orlova, A.I., Kemenov, D.V., Pet’kov, V.I., et al., Ultralow and negative thermal expansion in zirconium phosphate ceramics, High Temp.–High Pressures, 2002, vol. 34, pp. 315–322.

    Article  CAS  Google Scholar 

  22. Carrasco, M.P., Guillem, M.C., and Alarmo, J., Preparation and structural study of sodium germanium phosphate–sodium titanium phosphate solid solutions: II. Evolution of thermal expansion with composition, Mater. Res. Bull., 1994, vol. 29, no. 8, pp. 817–826.

    Article  CAS  Google Scholar 

  23. Orlova, A.I., Zyryanov, V.N., Kotel’nikov, A.R., et al., Ceramic phosphate matrices for high-level radioactive waste, Radiokhimiya, 1993, vol. 35, no. 6, pp. 120–126.

    CAS  Google Scholar 

  24. Orlova, A.I., Lizunova, G.M., Kitaev, D.B., et al., Tezisy dokladov XIV Mezhdunarodnogo soveshchaniya po rentgenografii mineralov (Abstracts of Papers, XIV Int. Conf. on X-Ray Diffraction Characterization of Minerals), St, Petersburg, 1999, pp. 84–86.

  25. Stefanovskii, S.V., Egor’kova, O.V., and Orlova, A.I., Tezisy dokladov VII Soveshchaniya po kristallokhimii neorganicheskikh i koordinatsionnykh soedinenii (Abstracts of Papers, VII Conf. on Crystal Chemistry of Inorganic and Coordination Compounds), St. Petersburg, 1995, p. 36.

  26. Alamo, J., Chemistry and properties of solids with the [NZP] skeleton, Solid State Ionics, 1993, vols. 63–65, pp. 547–561.

    Article  Google Scholar 

  27. Sobolev, I.A., Ozhovan, M.I., Shcherbatova, T.D., and Batyukhnova, O.G., Stekla dlya radioaktivnykh otkhodov (Glass for Radioactive Waste), Moscow: Energoatomizdat, 1999, pp. 156–171.

  28. Hayward, P.J., Vance, E.R., Cann, C.D., et al., Waste management. II, Adv. Ceram., 1986, vol. 20, pp. 215–222.

    CAS  Google Scholar 

  29. Hayward, P.J., Vance, E.R., and Cann, C.D., Crystallization of titanosilicate glasses for nuclear waste immobilization, J. Am. Ceram. Soc., 1989, vol. 72, no. 4, pp. 579–586.

    Article  CAS  Google Scholar 

  30. Munir, Z.A., Anselmi-Tamburini, U., and Ohyanagi, M., The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method, J. Mater. Sci., 2006, vol. 41, pp. 763–777.

    Article  CAS  Google Scholar 

  31. Potanina, E.A., Orlova, A.I., Nokhrin, A.V., et al., Characterization of Nax(Ca/Sr)1 – 2xNdxWO4 complex tungstates fine-grained ceramics obtained by spark plasma sintering, Ceram. Int., 2018, vol. 44, no. 4, pp. 4033–4044.

    Article  CAS  Google Scholar 

  32. Orlova, A.I., Koryttseva, A.K., Kanunov, A.E., et al., Fabrication of NaZr2(PO4)3-type ceramic materials by spark plasma sintering, Inorg. Mater., 2012, vol. 48, no. 3, pp. 313–317.

    Article  CAS  Google Scholar 

  33. GOST (State Standard) R 52126-2003: Radioactive Waste: Assessment of Chemical Stability, 2003.

  34. Hagman, L.O. and Kierkegard, P., The crystal structure of Na\({\text{M}}_{2}^{{{\text{IV}}}}\)(PO4)3; MIV = Ge, Ti, Zr, Acta Chem. Scand., 1968, vol. 22, no. 6, pp. 1822–1832.

    Article  CAS  Google Scholar 

  35. Limaye, S.Y., Agrawal, D.K., and McKinstry, H.A., Synthesis and thermal expansion of MZr4P6O24 (M = Mg, Ca, Sr, Ba), J. Am. Ceram. Soc., 1987, vol. 70, no. 10, pp. 232–236.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Karaeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaeva, M.E., Savinykh, D.O., Orlova, A.I. et al. Synthesis, Temperature Behavior, and Hydrolytic Stability of Na–Zr and Ca–Zr Phosphate Molybdates and Phosphate Tungstates. Inorg Mater 58, 78–89 (2022). https://doi.org/10.1134/S002016852201006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002016852201006X

Keywords:

Navigation