Skip to main content
Log in

Dynamic Magnetic Susceptibility of Silver-Doped Iron Thiochromite

  • Published:
Inorganic Materials Aims and scope

Abstract—

Detailed dynamic magnetic susceptibility measurements for Fe1 – xAgxCr2S4 (x = 0–0.15) solid solutions have shown that polycrystalline silver-doped iron thiochromite undergoes paramagnetic-to-ferrimagnetic phase transitions with transition temperatures dependent on the degree of silver substitution for iron, TC = 194–212 K at x = 0.05–0.15, and spin glass transitions at Tf = 80–115 K for x = 0.05–0.15. The increase in the transition temperatures with increasing silver concentration is attributable to the diamagnetic dilution effect. The cusp observed around 50 K, due to the low-temperature structural anomaly in the Fe1 – xAgxCr2S4 solid solutions, has been confirmed by measuring the imaginary part of their dynamic magnetic susceptibility as a function of temperature, χ''(T), at an increased field modulation amplitude of 15 Oe. An effect related to long-range orbital ordering as a consequence of a Jahn–Teller transition has been found at temperatures TOO = 10–15 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Aminov, T.G., Shabunina, G.G., and Busheva, E.V., Synthesis and magnetic properties of silver-doped iron dichromium tetrasulfide, Inorg. Mater., 2020, vol. 56, no. 8, pp. 771–778.https://doi.org/10.1134/S0020168520080014

    Article  CAS  Google Scholar 

  2. Ramirez, A.P., Cava, R.J., and Krajewski, J., Colossal magnetoresistance in Cr-based chalcogenide spinels, Nature, 1997, vol. 386, pp. 156–159.https://doi.org/10.1038/386156a0

    Article  CAS  Google Scholar 

  3. Fritsch, V., Deisenhoi’er, J., Fichtl, R., Hemberger, J., et al., Anisotropic colossal magnetoresistance effects in Fe1 – xCuxCr2S4, Phys. Rev. B: Condens. Matter Mater. Phys., 2003, vol. 67, paper 144419.https://doi.org/10.1103/PhysRevB.67.144419

  4. Chen Shen, Zhaorong Yang, Ran Tong, et al., Magnetic anisotropy-induced spin-reorientation in spinel FeCr2S4, J. Magn. Magn. Mater., 2009, vol. 321, pp. 3090–3092.https://doi.org/10.1016/J.JMMM.2009.05.009

    Article  CAS  Google Scholar 

  5. Hemberger, J., Lunkenheimer, P., Fichtl, R., Krug von Nidda, H.-A., et al., Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic FeCr2S4, Nature, 2005, vol. 434, pp. 364–367.https://doi.org/10.1038/nature03348

    Article  CAS  PubMed  Google Scholar 

  6. Yamasaki, Y., Miyasaka, S., Kaneko, Y., He, J.-P., et al., Magnetic reversal of the ferroelectric polarization in a multiferroic spinel, Phys. Rev. Lett., 2006, vol. 96, paper 207204.https://doi.org/10.1103/PhysRevLett.96.207204

  7. Weber, S., Lunkenheimer, P., Fichtl, R., Hemberger, I., et al., Colossal magnetocapacitance and colossal magnetoresistance in FeCr2S4, Phys. Rev. Lett., 2006, vol. 96, paper 157202.https://doi.org/10.1103/PhysRevLett.96.157202

  8. Tsurkan, V., Fritsch, V., Hemberger, J., et al., Orbital fluctuations and orbital order in FeCr2S4, J. Phys. Chem. Solids, 2005, vol. 66, pp. 2036–2039.https://doi.org/10.1016/j.jpcs.2005.09.041

    Article  CAS  Google Scholar 

  9. Hemberger, J., Rudolf, T., Krug von Nidda, H.-A., Mayr, F., et al., Spin-driven phonon splitting in bond-frustrated FeCr2S4, Phys. Rev. Lett., 2006, vol. 97, paper 087204.https://doi.org/10.1103/PhysRevLett.97.087204

  10. Strinic, A., Reschke, S., Vasin, K.V., Schmidt, M., et al., Magneto-electric properties and low-energy excitations of multiferroic FeCr2S4, Phys. Rev. B: Condens. Matter Mater. Phys., 2020, vol. 102, paper 134409.https://doi.org/10.1103/PhysRevB.102.134409

  11. Rudolf, T., Kant, Ch., Mayr, F., Hemberger, J., et al., Spin–phonon coupling in antiferromagnetic chromium spinels, New J. Phys., 2007, vol. 9, paper 76.https://doi.org/10.1088/1367-2630/9/3/076

  12. Shirane, G., Cox, D.E., and Pickard, S.J., Magnetic structures in FeCr2S4 and FeCr2O4, J. Appl. Phys., 1964, vol. 35, pp. 954–955.https://doi.org/10.1063/1.1713556

    Article  CAS  Google Scholar 

  13. Broquetas Colominas, C., Ballestracci, R., and Roult, G., Étude par diffraction neutronique du spinelle FeCr2S4, Physique, 1964, vol. 25, pp. 526–528.https://doi.org/10.1051/jphys:01964002505052600

    Article  Google Scholar 

  14. Mertinat, M., Tsurkan, V., Samusi, D., Tidecks, R., and Haider, F., Low-temperature structural transition in FeCr2S4, Phys. Rev. B: Condens. Matter Mater. Phys., 2005, vol. 71, paper 100408.https://doi.org/10.1103/PhysRevB.71.100408

  15. Tsurkan, V., Baran, M., Szymczak, R., Szymczak, H., and Tidecks, R., Spin-glass like states in the ferrimagnet FeCr2S4, Phys. B (Amsterdam, Neth.), 2001, vol. 296, pp. 301–305.https://doi.org/10.1016/S0921-4526(00)00760-2

  16. Aminov, T.G., Shabunina, G.G., Efimov, N.N., Busheva, E.V., and Novotortsev, V.M., Magnetic properties of FeCr2S4-based solid solutions in the FeCr2S4–CdCr2S4 system, Inorg. Mater., 2019, vol. 55, no. 3, pp. 210–222.https://doi.org/10.1134/S0020168519030038

    Article  CAS  Google Scholar 

  17. Aminov, T.G., Shabunina, G.G., and Busheva, E.V., Dynamic susceptibility of thiochromite FeCr2S4, Russ. J. Inorg. Chem., 2020, vol. 65, no. pp. 193–198.https://doi.org/10.1134/S0036023620020023

  18. Kalvius, G.M., Krimmel, A., Hartmann, O., Wappling, R., Wagneret, F., et al., Low temperature incommensurately modulated and noncollinear spin structure in FeCr2S4, J. Phys.: Condens. Matter, 2010, vol. 22, paper 052205.https://doi.org/10.1088/0953-89/22/5/052205

  19. Hoy, G.H. and Chandra, S., Effective field parameters in iron Mössbauer spectroscopy, J. Chem. Phys., 2014, vol. 140, paper 167101.https://doi.org/10.1036/1.1712062

  20. Eibschutz, M., Shtrikman, S., and Tenenbaum, Y., Magnetically induced electric field gradient in tetrahedral divalent iron: FeCr2S4, Phys. Lett. A, 1967, vol. 24, no. 11, pp. 563–564.https://doi.org/10.1016/0375-9601(67)90615-9

    Article  Google Scholar 

  21. Singh, K.P., Magnetically induced quadrupole interactions in FeCr2S4, Phys. Rev., 1968, vol. 172, pp. 514–519.https://doi.org/10.1103/Phys.Rev.172.514

    Article  Google Scholar 

  22. Spender, M.S. and Morrish, L.E., Mössbauer study of the ferrimagnetic spinel FeCr2S4, Can. J. Phys., 1972, vol. 50, no. 1, pp. 1125–1138.https://doi.org/10.1139/p72-155

    Article  CAS  Google Scholar 

  23. Brossard, L., Dormann, J.L., Goldstein, L., Gibart, P., and Renaudin, P., Second-order phase transition in FeCr2S4 investigated by Mössbauer spectroscopy: an example of orbital para-to-ferromagnetism transition, Phys. Rev., 1979, vol. 20, pp. 2933–2944. https://doi.org/10.1103PhysRevB.20.2933

    Article  CAS  Google Scholar 

  24. Feiner, F. and van Stapele, R.P., Comment on the second-order phase transition in FeCr2S4, Phys. Rev., 1980, vol. 22, p. 2585.https://doi.org/10.1103/PhysRevB.22.2585

    Article  CAS  Google Scholar 

  25. Feiner, F., Unified description of the cooperative Jahn–Teller effect in FeCr2S4 and the impurity Jahn–Teller effect in CoCr2S4:Fe2+, J. Phys. C: Solid State Phys., 2000, no. 15, pp. 1515–1524.https://doi.org/10.1088/0022-3719/15/7/017

  26. Maurer, D., Tsurkan, V., Horn, S., and Tidecks, R., Dynamic susceptibility of thiochromite FeCr2S4, J. Appl. Phys., 2003, vol. 93, pp. 9173–9176.https://doi.org/10.1063/1/1570930

    Article  CAS  Google Scholar 

  27. Fichtl, R., Tsurkan, V., Lunkenheimer, P., Hemberger, J., Fritsch, V., et al., Orbital freezing and orbital glass state in FeCr2S4, Phys. Rev. Lett., 2005, vol. 94, paper 027601.https://doi.org/10.1103/PhysRevLett.94.027601

Download references

Funding

This work was supported by the Russian Federation Ministry of Science and Higher Education (state research target for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, in the field of basic research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Efimov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Tsarev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aminov, T.G., Shabunina, G.G., Busheva, E.V. et al. Dynamic Magnetic Susceptibility of Silver-Doped Iron Thiochromite. Inorg Mater 58, 7–17 (2022). https://doi.org/10.1134/S0020168522010022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168522010022

Keywords:

Navigation