Skip to main content
Log in

Rapid X-Ray Fluorescence Analysis of Intercalation Compounds for Molybdenum Content

  • SUBSTANCES ANALYSIS
  • Published:
Inorganic Materials Aims and scope

Abstract

Expansion of the works on the synthesis and study of the structure of new intercalation compounds based on molybdenum disulfide (MD) with various inclusions of organic molecules in the layered structures entails the necessity of developing methods for rapid analysis of those compounds for molybdenum content. We developed a rapid method of XRF analysis of such compounds using a bulk method in the range of 28–50% Mo content. Analytical signals were measured for the MoKα line on a VRA-30 spectrometer (Carl Zeiss, Jena, Germany; X-ray tube with Rh anode operated in the mode of 35 kV, 15 mA). The molybdenum content is calculated using the derived coupling equation; the error of determination is ±2.5% Mo (abs.). In contrast to the traditional methods of external standard with dilution used in laboratory practice, the proposed method provides satisfactory accuracy and reduces the duration of analysis from ~100 to ~20 min, the sample material being kept safe for further studies. Correctness of the method was confirmed for the batch of compounds by comparison of the obtained results and the data of XRF analysis with the dilution procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Goloveshkin, A.S., Bushmarinov, I.S., Korlyukov, A.A., et al., Atomic structure and bonding interaction in a layered molybdenum disulfide compound with trimethylphenylammonium cations, Russ. J. Inorg. Chem., 2017, vol. 62, no. 6, pp. 729–735. https://doi.org/10.1134/S0036023617060080

    Article  CAS  Google Scholar 

  2. Ushakov, I.E., Goloveshkin, A.S., Lenenko, N.D., et al., Hydrogen bond-driven self-assembly between single-layer MoS2 and alkyldiamine molecules, Cryst. Growth Des., 2018, vol. 18, pp. 5116–5123. https://doi.org/10.1021/acs.cgd.8b00551

    Article  CAS  Google Scholar 

  3. Bushmarinov, I.S., Goloveshkin, A.S., Lenenko, N.D., et al., Electrostatic origin of stabilization in MoS2—organic nanocrystals, J. Phys. Chem. Lett., 2016, vol. 7, no. 24, pp. 5162–5167. https://doi.org/10.1021/acs.jpclett.6b02582

    Article  CAS  PubMed  Google Scholar 

  4. Golub, A.S., Lenenko, N.D., Zaikovskii, V.I., et al., Modifying magnetic properties and dispersity of few-layer MoS2 particles by 3d metal carboxylate complexes, Mater. Chem. Phys., 2016, vol. 183, pp. 457–466. https://doi.org/10.1016/j.matchemphys.2016.09.001

  5. Blokhin, M.A., Fizika rentgenovskikh luchei (Physics of X-Rays), Moscow: Gostekhizdat, 1957.

  6. Losev, N.F., Kolichestvennyi rentgenospektral’nyi fluorestsentnyi analiz (Quantitative X-Ray Spectral Fluorescence Analysis), Moscow: Nauka, 1969.

  7. Losev, N.F. and Smagunova, A.N., Osnovy rentgenospektral’nogo fluorestsentnogo analiza (Fundamentals of X-Ray Spectral Fluorescence Analysis), Moscow: Khimiya, 1982.

  8. Bakhtiyarov, A.V. and Savel’ev, S.K., Rentgenofluorestsentnyi analiz mineral’nogo syr’ya (X-Ray Fluorescence Analysis of Mineral Raw Materials), St. Petersburg: S.-Peterb. Gos. Univ., 2014.

  9. Suvorova, D.S., Khudonogova, E.V., and Revenko, A.G., X-ray fluorescence determination of Cs, Ba, La, Ce, Nd, and Ta concentrations in rocks of various composition, X-Ray Spectrom., 2017, vol. 46, no. 3, pp. 200–208. https://doi.org/10.1002/xrs.2747

    Article  CAS  Google Scholar 

  10. Chubarov, V.M., Amosova, A.A., and Finkelshtein, A.L., X-ray fluorescence determination of ore elements in ferromanganese formations, Inorg. Mater., 2020, vol. 56, no. 14, pp. 1423–1430. https://doi.org/10.1134/S0020168520140046

    Article  CAS  Google Scholar 

  11. Sharanov, P.Yu. and Alov, N.V., Total reflection X-ray fluorescence analysis of solid metallurgical samples, J. Anal. Chem., 2018, vol. 73, no. 11, pp. 1085–1092. https://doi.org/10.1134/S1061934818110126

    Article  CAS  Google Scholar 

  12. Krotova, A.A., Prikhodko, K.Ya., Vladimirova, S.A., and Filatova, D.G., Determination of nickel, zinc and cobalt in advanced materials based on NixCo3–xO4 and ZnxCo3–xO4 by inductively coupled plasma mass spectrometry (ICP-MS) and X-ray fluorescence, Inorg. Mater., 2019, vol. 55, no. 14, pp. 1343–1346. https://doi.org/10.1134/S0020168519140097

    Article  CAS  Google Scholar 

  13. Malkov, A.V., Kozhevnikov, A.Yu., Kosyakov, D.S., and Kosheleva, A.E., Determination of Ni, Co, and Cu in seawater by total external reflection X-ray fluorescence spectrometry, J. Anal. Chem., 2017, vol. 72, no. 6, pp. 608–616. https://doi.org/10.1134/S1061934817060107

    Article  CAS  Google Scholar 

  14. Revenko, A.G. and Sharygina, D.S., The application of X-ray fluorescence analysis to study the chemical compositions of tea and coffee samples, Anal. Kontrol, 2019, vol. 23, no. 1, pp. 6–23. https://doi.org/10.15826/analitika.2019.23.1.015

    Article  Google Scholar 

  15. Metody kolichestvennogo organicheskogo elementnogo mikroanaliza (Methods of Quantitative Organic Elemental Microanalysis), Gel’man, N.E., Ed., Moscow: Khimiya, 1987.

  16. Talanova, V.N., Lependina, O.L., Buyanovskaya, A.G., et al., Sources of errors in nondestructive X-ray fluorescence analysis of small samples diluted with a solid diluent: XRF determination of Mn in cymantrenes, Zavod. Lab., Diagn. Mater., 2017, vol. 83, no. 10, pp. 65–69. https://doi.org/10.26896/1028-6861-2017-83-10-65-69

    Article  CAS  Google Scholar 

  17. Talanova, V.N., Lependina, O.L., Kitaeva, D.Kh., et al., Experience in using Alpha-VRA-30 software for determination of iron and zinc content in organometallic compounds and polymers, Zavod. Lab., Diagn. Mater., 2018, vol. 84, no. 8, pp. 20–24. https://doi.org/10.26896/1028-6861-2018-84-8-20-24

    Article  Google Scholar 

  18. Kuz’mina, T.G., Troneva, M.A., Kononkova, N.N., and Romashova, T.V., Error of sample preparation in pressing emitters for X-ray fluorescence analysis, J. Anal. Chem., 2017, vol. 72, no. 3, pp. 272–278. https://doi.org/10.1134/S1061934817030066

    Article  CAS  Google Scholar 

  19. Blokhin, M.A. and Shveitser, I.G., Rentgenospektral’nyi spravochnik (Handbook of X-Ray Spectroscopy), Moscow: Nauka, 1982.

  20. RMG 76-2014. GSI. Vnutrennii kontrol’ kachestva rezul’tatov kolichestvennogo khimicheskogo analiza (RMG 76-2014. State System for Ensuring the Uniformity of Measurements. Internal Control of Quantitative Chemical Analysis Result’s Accuracy), Moscow: Standartinform, 2015.

  21. Inyaev, I.V. and Danilina, E.I., Metrologicheskaya obrabotka rezul’tatov khimicheskogo analiza (Metrological Processing of the Results of Chemical Analysis), Chelyabinsk: Yuzh.-Ural. Gos. Univ., 2015.

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Talanova.

Additional information

Translated by Sh. Galyaltdinov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talanova, V.N., Lependina, O.L., Kitaeva, D.K. et al. Rapid X-Ray Fluorescence Analysis of Intercalation Compounds for Molybdenum Content. Inorg Mater 57, 1422–1426 (2021). https://doi.org/10.1134/S0020168521140144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521140144

Keywords:

Navigation