Skip to main content
Log in

Nanoscale Single-Crystal Silicon Carbide on Silicon and Unique Properties of This Material

  • Published:
Inorganic Materials Aims and scope

Abstract

The paper reviews the latest advances in the growth of epitaxial SiC films on Si by the coordinated atomic substitution method. The conceptual issues and procedure of the new method for synthesizing epitaxial SiC films on Si are described. It is shown that this method significantly differs from the classical thin film growth schemes. Film growth in accordance with the classical mechanism is provided by deposition of atoms on the surface of a substrate. The new method consists in the coordinated atomic substitution of a portion of the atoms of the silicon matrix by carbon atoms to form an epitaxial silicon carbide film. The new growth method is compared with the classical thin film growth mechanisms. It is shown that the main distinctive feature of SiC films synthesized by this method is the formation of an excess concentration of silicon vacancies in it, whereas SiC grown by the standard methods comprises mostly carbon vacancies. It is shown that the interaction of carbon atoms and silicon vacancies leads to the formation of ordered ensembles of carbon–vacancy structures in SiC layers grown by the coordinated atomic substitution method. The formation of these structures is attributed to both the occurrence of a chemical substitution reaction and the contraction of the Si lattice cell during the transformation of it into a SiC lattice cell. The presence of carbon–vacancy structures in SiC imparts a number of new unique properties to the silicon carbide. In particular, a Si layer exhibiting the electronic properties of a “semimetal” is formed at the SiC–Si interface. In addition, carbon–vacancy structures provide unique optical, electrical, and magnetic properties. In particular, two quantum effects—a hysteresis of the static magnetic susceptibility and the occurrence of Aharonov–Bohm oscillations in the field dependences of the static magnetic susceptibility—are found to occur in weak magnetic fields at room temperature. The first of the effects is associated with the Meissner–Ochsenfeld effect; the second is associated with the presence of carbon–vacancy structures and microdefects in the form of nanotubes and micropores formed in these structures during SiC synthesis under the SiC layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. Kukushkin, S.A. and Osipov, A.V., New method for growing silicon carbide on silicon by solid-phase epitaxy: model and experiment, Phys. Solid State, 2008, vol. 50, no. 7, pp. 1238–1245. https://doi.org/10.1134/S1063783408070081

    Article  CAS  Google Scholar 

  2. Kukushkin, S.A., Osipov, A.V., and Feoktistov, N.A., RF Patent 2363067, 2009.

  3. Kukushkin, S.A. and Osipov, A.V., Nano-SiC na Si—novyi material dlya mikro- i optoelektroniki (Nano-SiC on Si is a New Material for Micro- and Optoelectronics), Moscow: Inst. Probl. Tochn. Mekh. Upr., Ross. Akad. Nauk, 2006.

  4. Kukushkin, S.A. and Osipov, A.V., Quantum mechanical theory of epitaxial transformation of silicon to silicon carbide, J. Phys. D: Appl. Phys., 2017, vol. 50, art. ID 464006. https://doi.org/10.1088/1361-6463/aa8f69

    Article  CAS  Google Scholar 

  5. Kukushkin, S.A. and Osipov, A.V., Thin-film heteroepitaxy by the formation of the dilatation dipole ensemble, Dokl. Phys., 2012, vol. 57, no. 5, pp. 217–220. https://doi.org/10.1134/S1028335812050072

    Article  CAS  Google Scholar 

  6. Kukushkin, S.A. and Osipov, A.V., A new mechanism of elastic energy relaxation in heteroepitaxy of monocrystalline films: interaction of point defects and dilatation dipoles, Mech. Solids, 2013, vol. 48, no. 2, pp. 216–227. https://doi.org/10.3103/S0025654413020143

    Article  Google Scholar 

  7. Kukushkin, S.A. and Osipov, A.V., A new method for the synthesis of epitaxial layers of silicon carbide on silicon owing to formation of dilatation dipoles, J. Appl. Phys., 2013, vol. 113, no. 2, art. ID 024909. https://doi.org/10.1063/1.4773343

    Article  CAS  Google Scholar 

  8. Kukushkin, S.A. and Osipov, A.V., Anisotropy of the solid-state epitaxy of silicon carbide in silicon, Semiconductors, 2013, vol. 47, no. 12, pp. 1551–1555. https://doi.org/10.1134/S1063782613120129

    Article  CAS  Google Scholar 

  9. Kukushkin, S.A. and Osipov, A.V., First-order phase transition through an intermediate state, Phys. Solid State, 2014, vol. 56, no. 4, pp. 792–800. https://doi.org/10.1134/S1063783414040143

    Article  CAS  Google Scholar 

  10. Kukushkin, S.A. and Osipov, A.V., Theory and practice of SiC growth on Si and its applications to wide-gap semiconductor films, J. Phys. D: Appl. Phys., 2014, vol. 47, art. ID 313001. https://doi.org/10.1088/0022-3727/47/31/313001

    Article  CAS  Google Scholar 

  11. Kukushkin, S.A., Osipov, A.V., and Feoktistov, N.A., Synthesis of epitaxial silicon carbide films through the substitution of atoms in the silicon crystal lattice: a review, Phys. Solid State, 2014, vol. 56, no. 8, pp. 1507–1535. https://doi.org/10.1134/S1063783414080137

    Article  CAS  Google Scholar 

  12. Kukushkin, S.A., Osipov, A.V., and Feoktistov, N.A., Chemical self-assembly of a single-crystal SiC film on a silicon substrate: a new method of directed nucleation, Russ. J. Gen. Chem., 2013, vol. 57, no. 6, pp. 36–47.

    CAS  Google Scholar 

  13. Gordeev, S.K., Korchagina, S.B., Kukushkin, S.A. and Osipov, A.V., RF Patent 2286616, 2006.

  14. Gordeev, S.K., Korchagina, S.B., Kukushkin, S.A., and Osipov, A.V., RF Patent 2286617, 2005.

  15. Kukushkin, S.A., Osipov, A.V., Gordeev, S.K., and Korchagina, S.B., Nonequilibrium heteroepitaxy of silicon carbide on silicon, Tech. Phys. Lett., 2005, vol. 31, no. 10, pp. 859–861. https://doi.org/10.1134/1.2121839

    Article  CAS  Google Scholar 

  16. Zukov, S.G., Lukyanov, A.V., Kukushkin, S.A., Osipov, A.V., and Feoktistov, N.A., RF Patent 130996, 2013.

  17. Kukushkin, S.A., Osipov, A.V., Rozhavskaya, M.M., Myasoedov, A.V., Troshkov, S.I., Lundin, V.V., Sorokin, L.M., and Tsatsul’nikov, A.F., Growth and structure of GaN layers on silicon carbide synthesized on a Si substrate by the substitution of atoms: a model of the formation of V-defects during the growth of GaN, Phys. Solid State, 2015, vol. 57, no. 9, pp. 1899–1907. https://doi.org/10.1134/S1063783415090218

    Article  CAS  Google Scholar 

  18. Kalinkin, I.P., Kukushkin, S.A., and Osipov, A.V., Effect of chemical treatment of a silicon surface on the quality and structure of silicon-carbide epitaxial films synthesized by atom substitution, Semiconductors, 2018, vol. 52, no. 6, pp. 802–808. https://doi.org/10.1134/S1063782618060118

    Article  CAS  Google Scholar 

  19. Kalinkin, I.P., Kukushkin, S.A., and Osipov, A.V., RF Patent 2323503, 2008.

  20. Handbook of Semiconductor Wafer Cleaning Technology: Science, Technology, and Applications, Kern, W., Ed., Park Ridge, NJ: Noyes, 1993.

    Google Scholar 

  21. Kukushkin, S.A. and Osipov, A.V., Mechanism of formation of carbon–vacancy structures in silicon carbide during its growth by atomic substitution, Phys. Solid State, 2018, vol. 60, no. 9, pp. 1891–1896. https://doi.org/10.1134/S1063783418090184

    Article  CAS  Google Scholar 

  22. Kukushkin, S.A., Osipov, A.V., and Telyatnik, R.S., Elastic interaction of point defects in cubic and hexagonal crystals, Phys. Solid State, 2016, vol. 58, no. 5, pp. 971–980. https://doi.org/10.1134/S1063783416050140

    Article  CAS  Google Scholar 

  23. Eshelby J.D., Elastic inclusions and inhomogeneities, in Progress in Solid Mechanics, Sneddon, I.N. and Hill, R., Eds., Amsterdam: North-Holland, 1961, vol. 2, pp. 89–140.

    Book  Google Scholar 

  24. Lifshits, I.M. and Rosentsveig, L.N., On construction of green’s tensor for the basic equation of elasticity in the case of unbounded elastoanisotropic medium, Zh. Vych. Matem. Fiz., 1947, vol. 17, no. 9, pp. 783–791.

    Google Scholar 

  25. Kuz’michev, S.V., Kukushkin, S.A., and Osipov, A.V., Elastic interaction of point defects in crystals with cubic symmetry, Mech. Solids, 2013, vol. 48, no. 4, pp. 431–438. https://doi.org/10.3103/S0025654413040110

    Article  Google Scholar 

  26. Egorov, V.K., Egorov, E.V., Kukushkin, S.A., and Osipov, A.V., Structural heteroepitaxy during topochemical transformation of silicon to silicon carbide, Phys. Solid State, 2017, vol. 59, no. 4, pp. 773–779. https://doi.org/10.1134/S1063783417040072

    Article  CAS  Google Scholar 

  27. Grudinkin, S.A., Kukushkin, S.A., Osipov, A.V., and Feoktistov, N.A., IR spectra of carbon-vacancy clusters in the topochemical transformation of silicon into silicon carbide, Phys. Solid State, 2017, vol. 59, no. 12, pp. 2430–2435. https://doi.org/10.1134/S1063783417120186

    Article  CAS  Google Scholar 

  28. Kukushkin, S.A., Nussupov, K.Kh., Osipov, A.V., Beisenkhanov, N.B., and Bakranova, D.I., X-ray reflectometry and simulation of the parameters of SiC epitaxial films on Si(111), grown by the atomic substitution method, Phys. Solid State, 2017, vol. 59, no. 5, pp. 1014–1026. https://doi.org/10.1134/S1063783417050195

    Article  CAS  Google Scholar 

  29. Kukushkin, S.A., Nussupov, K.Kh., Osipov, A.V., Beisenkhanov, N.B., and Bakranova, D.I., Structural properties and parameters of epitaxial silicon carbide films, grown by atomic substitution on the high-resistance (111) oriented silicon, Superlattices Microstruct., 2017, vol. 111, pp. 899–911. https://doi.org/10.1016/j.spmi.2017.07.050

    Article  CAS  Google Scholar 

  30. Benemanskaya, G.V., Dementev, P.A., Kukushkin, S.A., Lapushkin, M.N., Osipov, A.V., Senkovskiy, B., and Timoshnev, S.N., Photoemission study of nano SiC epitaxial layers synthesized by a new method of the atom substitution in Si crystal lattice, Mater. Phys. Mech., 2015, vol. 22, no. 2, pp. 183–190.

    CAS  Google Scholar 

  31. Kukushkin, S.A., Benemanskaya, G.V., Dementev, P.A., Senkovskiy, B., and Timoshnev, S.N., Synchrotron-radiation photoemission study of the ultrathin Ba/3C–SiC(111) interface, J. Phys. Chem. Solids, 2016, vol. 90, pp. 40–44. https://doi.org/10.1016/j.jpcs.2015.10.018

    Article  CAS  Google Scholar 

  32. Benemanskaya, G.V., Dementev, P.A., Kukushkin, S.A., Osipov, A.V., and Timoshnev, S.N., Carbon-based aromatic-like nanostructures on the vicinal SiC surfaces induced by Ba adsorption, ECS J. Solid State Sci. Technol., 2019, vol. 8, no. 6, pp. M53–M59. https://doi.org/10.1149/2.0031906jss

    Article  CAS  Google Scholar 

  33. Davydov, S.Yu. and Lebedev, A.A., Vacancy kinetics in heteropolytype epitaxy of SiC, Semiconductors, 2007, vol. 41, no. 6, pp. 621–624. https://doi.org/10.1134/S1063782607060012

    Article  CAS  Google Scholar 

  34. Christian, J.W., The Theory of Transformations in Metals and Alloys, Oxford: Pergamon, 2002.

    Google Scholar 

  35. Sorokin, L.M., Veselov, N.V., Shcheglov, M.P., Kalmykov, A.E., Sitnikova, A.A., Feoktistov, N.A., Osipov, A.V., and Kukushkin, S.A., Electron-microscopic investigation of a SiC/Si(111) structure obtained by solid phase epitaxy, Tech. Phys. Lett., 2008, vol. 34, no. 11, pp. 992–994. https://doi.org/10.1134/S1063785008110278

    Article  CAS  Google Scholar 

  36. Kukushkin, S.A. and Osipov, A.V., The Gorsky effect in the synthesis of silicon-carbide films from silicon by topochemical substitution of atoms, Tech. Phys. Lett., 2017, vol. 43, no. 7, pp. 631–634. https://doi.org/10.1134/S1063785017070094

    Article  CAS  Google Scholar 

  37. Ratnikov, V.V., Kalmykov, A.E., Myasoedov, A.V., Kukushkin, S.A., Osipov, A.V., and Sorokin, L.M., Sequential structural characterization of layers in the GaN/AlN/SiC/Si(111) system by X-ray diffraction upon every growth stage, Tech. Phys. Lett., 2013, vol. 39, no. 11, pp. 994–997. https://doi.org/10.1134/S1063785013110230

    Article  CAS  Google Scholar 

  38. Gorsky, W.S., Theorie des elastischen Nachwirkung in ungeordneten Mischkristallen (elastische Nachwirkung zweiter Art), Phys. Z. Sowjetunion, 1935, vol. 8, pp. 457–471.

    Google Scholar 

  39. Kukushkin, S.A., Osipov, A.V., Bessolov, V.N., Medvedev, B.K., Nevolin, V.K., and Tcarik, K.A., Substrates for epitaxy of gallium nitride: new materials and techniques, Rev. Adv. Mater. Sci., 2008, vol. 17, pp. 1–32.

    CAS  Google Scholar 

  40. Kukushkin, S.A. and Osipov, A.V., Phase equilibrium in the formation of silicon carbide by topochemical conversion of silicon, Phys. Solid State, 2016, vol. 58, no. 4, pp. 747–751. https://doi.org/10.1134/S1063783416040120

    Article  CAS  Google Scholar 

  41. Kukushkin, S.A., Osipov, A.V., and Soshnikov, I.P., Growth of epitaxial SiC layer on Si(100) surface of n- and p-type of conductivity by the atoms substitution method, Rev. Adv. Mater. Sci., 2017, vol. 52, pp. 29–42. http://www.ipme.ru/e-journals/RAMS/no_15217/05_ 15217_kukushkin.pdf

    CAS  Google Scholar 

  42. Grashchenko, A.S., Feoktistov, N.A., Osipov, A.V, Kalinina, E.V., and Kukushkin, S.A., Photoelectric characteristics of silicon carbide–silicon structures grown by the atomic substitution method in a silicon crystal lattice, Semiconductors, 2017, vol. 51, no. 5, pp. 621–627. https://doi.org/10.1134/S1063782617050086

    Article  CAS  Google Scholar 

  43. Kukushkin, S.A. and Osipov, A.V., Mechanism of formation of carbon–vacancy structures in silicon carbide during its growth by atomic substitution, Phys. Solid State, 2017, vol. 60, no. 9, pp. 1891–1896. https://doi.org/10.1134/S1063783418090184

    Article  Google Scholar 

  44. Kukushkin, S.A. and Osipov, A.V., Determining polytype composition of silicon carbide films by UV ellipsometry, Tech. Phys. Lett., 2016, vol. 42, no. 2, pp. 175–178. https://doi.org/10.1134/S1063785016020280

    Article  CAS  Google Scholar 

  45. Grudinkin, S.A., Golubev, V.G., Osipov, A.V., Feoktistov, N.A., and Kukushkin, S.A., Infrared spectroscopy of silicon carbide layers synthesized by the substitution of atoms on the surface of single-crystal silicon, Phys. Solid State, 2015, vol. 57, no. 12, pp. 2543–2549. https://doi.org/10.1134/S1063783415120136

    Article  CAS  Google Scholar 

  46. Kukushkin, S.A., Nucleation of pores in brittle solids under load, J. Appl. Phys., 2005, vol. 98, art. ID 033503. https://doi.org/10.1063/1.1957131

    Article  CAS  Google Scholar 

  47. Geguzin, Ya.E., Diffuzionnaya zona (Diffusion Zone), Moscow: Nauka, 1979.

  48. Kukushkin, S.A. and Osipov, A.V., The equilibrium state in the Si-O-C ternary system during SiC growth by chemical substitution of atoms, Tech. Phys. Lett., 2015, vol. 41, no. 3, pp. 259–262. https://doi.org/10.1134/S1063785015030244

    Article  CAS  Google Scholar 

  49. Kelly, A. and Groves, G.W., Crystallography and Crystal Defects, London: Longman, 1970.

    Google Scholar 

  50. Kukushkin, S.A. and Osipov, A.V., Drift mechanism of mass transfer on heterogeneous reaction in crystalline silicon substrate, Phys. B (Amsterdam), 2017, vol. 512, pp. 26–31 https://doi.org/10.1016/j.physb.2017.02.018

    Article  CAS  Google Scholar 

  51. Kidalov, V.V., Kukushkin, S.A., and Osipov, A.V., Redkov, A.V., Grashchenko, A.S., Soshnikov, I.P., Boiko, M.E., Sharkov, M.D., and Dyadenchuk, A.F., Properties of SiC films obtained by the method of substitution of atoms on porous silicon, ECS J. Solid State Sci. Technol., 2018, vol. 7, no. 4, pp. 158–160. https://doi.org/10.1149/2.0061804jss

    Article  CAS  Google Scholar 

  52. Kukushkin, S.A., Osipov, A.V., and Osipova, E.V., Mechanism of molecule migration of carbon and silicon monoxides in silicon carbide crystal, Mater. Phys. Mech., 2019, vol. 42, pp. 178–182. https://doi.org/10.18720/MPM.4222019_3

    Article  CAS  Google Scholar 

  53. Kukushkin, S.A. and Osipov, A.V., Mechanism of diffusion of carbon and silicon monooxides in a cubic silicon carbide crystal, Phys. Solid State, 2019, vol. 61, no. 12, pp. 2338–2341. https://doi.org/10.1134/S1063783419120242

    Article  CAS  Google Scholar 

  54. Redkov, A.V., Grashchenko, A.S., Kukushkin, S.A., and Osipov, A.V., Kotlyard, K.P., Likhachevd, A.I., Nashchekind, A.V., and Soshnikov, I.P., Studying evolution of the ensemble of micropores in a SiC/Si structure during its growth by the method of atom substitution, Phys. Solid State, 2019, vol. 61, no. 3, pp. 299–306. https://doi.org/10.1134/S1063783419030272

    Article  CAS  Google Scholar 

  55. Kukushkin, S.A., Osipov, A.V., Romanychev, A.I., Kasatkin, I.A., and Loshachenko, A.S., Low-temperature growth of the CdS cubic phase by atomic-layer deposition on SiC/Si hybrid substrates, Tech. Phys. Lett., 2020, vol. 46, no. 11, pp. 1049–1052. https://doi.org/10.1134/S1063785020110085

    Article  CAS  Google Scholar 

  56. Kitaev, Yu.E., Kukushkin, S.A., and Osipov, A.V., Evolution of the symmetry of intermediate phases and their phonon spectra during the topochemical conversion of silicon into silicon carbide, Phys. Solid State, 2017, vol. 59, no. 1, pp. 28-33. https://doi.org/10.1134/S1063783417010164

    Article  CAS  Google Scholar 

  57. Kitaev, Yu.E., Kukushkin, S.A., Osipov, A.V., and Redkov, A.V., A new trigonal (rhombohedral) SiC phase: ab initio calculations, a symmetry analysis and the Raman spectra, Phys. Solid State, 2018, vol. 60, no. 10, pp. 2066–2071. https://doi.org/10.1134/S1063783418100116

    Article  CAS  Google Scholar 

  58. Grashchenko, A.S., Kukushkin, S.A., and Osipov, A.V., Nanoindentation and deformation properties of nanoscale silicon carbide films on silicon substrate, Tech. Phys. Lett., 2014, vol. 40, no. 12, pp. 1114–1116. https://doi.org/.10.1134/S1063785014120268

  59. Grashchenko, A.S., Kukushkin, S.A., and Osipov, A.V., Study of elastic properties of SiC films synthesized on Si substrates by the method of atomic substitution, Phys. Solid State, 2019, vol. 61, no. 12, pp. 2310–2312. https://doi.org/10.1134/S106378341912014X

  60. Osipov, A.V., Grashchenko, A.S., Gorlyak, A.N., Lebedev, A.O., Luchinin, V.V., Markov, A.V., Panov, M.F., and Kukushkin, S.A., Investigation of the hardness and young’s modulus in thin near-surface layers of silicon carbide from the Si- and C-faces by nanoindentation, Tech. Phys. Lett., 2020, vol. 46, no. 8, pp. 763–766. https://doi.org/10.1134/S106378502008012X

    Article  CAS  Google Scholar 

  61. Kukushkin, S.A. and Osipov, A.V., The optical properties, energy band structure, and interfacial conductance of a 3C-SiC(111)/Si(111) heterostructure grown by the method of atomic substitution, Tech. Phys. Lett., 2020, vol. 46, no. 11, pp. 1103–1106. https://doi.org/10.1134/S1063785020110243

    Article  CAS  Google Scholar 

  62. Kukushkin, S.A. and Osipov, A.V., Anomalous properties of the dislocation-free interface between Si(111) substrate and 3C-SiC(111) epitaxial layer, Materials, 2021, vol. 14, no. 78, pp. 1–12. https://doi.org/10.3390/ma14010078

    Article  CAS  Google Scholar 

  63. Bagraev, N.T., Kukushkin, S.A., Osipov, A.V., Romanov, V.V., Klyachkin, L.E., Malyarenko, A.M., and Khromov, V.S., Magnetic properties of thin epitaxial SiC layers grown by the atom-substitution method on single-crystal silicon surfaces, Semiconductors, 2021, vol. 55, no. 2, pp. 137–145. https://doi.org/10.1134/S106378262102007X

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were conducted using the equipment of the unique research setup Physics, Chemistry, and Mechanics of Crystals and Thin Films of the Institute of Problems of Mechanical Engineering of the Russian Academy of Sciences (St. Petersburg).

Funding

This work was supported by the Russian Science Foundation (project no. 20-12-00193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kukushkin.

Ethics declarations

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukushkin, S.A., Osipov, A.V. Nanoscale Single-Crystal Silicon Carbide on Silicon and Unique Properties of This Material. Inorg Mater 57, 1319–1339 (2021). https://doi.org/10.1134/S0020168521130021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0020168521130021

Keywords:

Navigation